Основы эконометрики

Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.

Подобные документы

  • Анализ зависимости объема потребления домохозяйства от располагаемого дохода. Построение регрессионной модели. Оценка качества уравнения регрессии. Расчет коэффициента эластичности, ошибок аппроксимации и регрессии, значения коэффициента детерминации.

    контрольная работа, добавлен 07.03.2016

  • Определение зависимости товарооборота за месяц применением уравнений множественной регрессии, которая оцениваются методом наименьших квадратов. Расчет товарооборота по методу Крамера. Экономическая интерпретация используемых параметров уравнения.

    контрольная работа, добавлен 23.03.2020

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Оценка статистической надежности уравнения регрессии с помощью F-критерия Фишера, коэффициента детерминации и скорректированного коэффициента детерминации. Расчет коэффициента корреляции для определения тесноты связи между исследуемыми признаками.

    задача, добавлен 25.03.2020

  • Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.

    задача, добавлен 27.09.2016

  • Анализ понятия и основных задач эконометрики - отрасли науки, цель которой состоит в том, чтобы придать количественные меры экономическим отношениям. Оценка существенности параметров парной линейной регрессии и корреляции в эконометрических исследованиях.

    лекция, добавлен 13.02.2011

  • Расчет линейных коэффициентов парной корреляции и детерминации. Оценка статистической значимости параметров регрессии и коэффициента корреляции с уровнем значимости 0,05. Прогноз значения признака-результата при прогнозируемом значении признака-фактора.

    контрольная работа, добавлен 25.03.2016

  • Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.

    курсовая работа, добавлен 29.04.2014

  • Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.

    контрольная работа, добавлен 02.02.2014

  • Расчет линейного коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации. Оценка статистической значимости уравнения регрессии и отдельных ее параметров и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа, добавлен 13.04.2022

  • Составление уравнения регрессии с применением метода наименьших квадратов. Оценка достоверности полученного уравнения с использованием корреляционного анализа. Расчет среднеквадратичного отклонения, коэффициентов парной детерминации и корреляции.

    задача, добавлен 19.04.2017

  • Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Оценка существенности параметров линейной регрессии и корреляции. Интервалы прогноза по линейному уравнению регрессии. Критерии оценки тесноты связи. Нелинейная регрессия.

    реферат, добавлен 21.04.2010

  • Расчет уравнения парной линейной регрессии зависимости прибыли от производительности труда. Особенность вычисления обобщающего коэффициента эластичности. Калькуляция средней ошибки аппроксимации. Характеристика показателей корреляции и детерминации.

    контрольная работа, добавлен 14.06.2015

  • Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.

    задача, добавлен 16.03.2014

  • Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.

    контрольная работа, добавлен 14.11.2011

  • Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.

    лекция, добавлен 29.09.2013

  • Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.

    контрольная работа, добавлен 01.03.2017

  • Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.

    учебное пособие, добавлен 18.03.2015

  • Параметры уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Прогнозирование среднего значения показателя. Графически фактические и модельные значения Y точки прогноза. График остаточной компоненты. Дисперсия остатков.

    задача, добавлен 05.12.2014

  • Расчет параметров уравнений линейной, экспоненциальной, полулогарифмической, обратной и гиперболической парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Анализ параметров уравнения регрессии, критерий Стьюдента.

    контрольная работа, добавлен 27.03.2017

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.

    контрольная работа, добавлен 30.11.2013

  • Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии. Определение коэффициентов автокорреляции уровней ряда первого и второго порядка.

    контрольная работа, добавлен 16.04.2020

  • Расчет коэффициентов корреляции и детерминации. Оценка уравнения регрессии. Матрица парных коэффициентов корреляции. Частные коэффициенты эластичности. Анализ параметров уравнения регрессии. Проверка гипотез относительно коэффициентов уравнения регрессии.

    контрольная работа, добавлен 22.09.2011

  • Расчет среднего отклонения и доверительного интервала для генерального среднего выручки. Нахождение методом наименьших квадратов уравнения прямой линии регрессии, построение графика корреляционных зависимостей. Оценка адекватности регрессионных моделей.

    контрольная работа, добавлен 26.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.