Метод сеток как способ решения дифференциальных уравнений модели процесса получения жидкого железа
Решение системы дифференциальных уравнений, описывающей процесс получения жидкого железа прямого восстановления в электродуговой сталеплавильной печи. Энергетические и химические процессы в расплаве и шлаке. Строение пространства моделирования системы.
Подобные документы
Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.
методичка, добавлен 25.03.2015Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013Решение некоторых типов линейных интегро-дифференциальных уравнений с аналитическими функциями с помощью метода степенных рядов. Условия для алгоритмизации задач. Линейные интегро-дифференциальные уравнения с пропорциональным запаздыванием аргумента.
статья, добавлен 29.04.2019Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Использование матричной системы Matlab и ее приложения Simulink для моделирования динамических систем и устройств, в которых необходимо составлять и решать системы дифференциальных уравнений. Построение структурной схемы контура самонаведения ракеты.
статья, добавлен 27.02.2019Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.
реферат, добавлен 05.03.2009- 108. Основы статистики
Понятие линейных систем, классический метод их описания. Векторная функция, матрица нормальной системы дифференциальных уравнений. Физический смысл частного и вспомогательного решений. Метод вариации произвольных постоянных неоднородной системы.
реферат, добавлен 27.12.2013 Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.
презентация, добавлен 07.05.2020Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Модальность как одна из качественных специфических особенностей эмоционального реагирования. Методика построения системы дифференциальных уравнений, описывающих протекание эмоции. Аппарат иммунных систем - способ реализации математической модели.
статья, добавлен 19.01.2018Численное решение системы дифференциальных уравнений. Решение задач интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом с использованием программы Matlab сведением в графики и таблицы.
курсовая работа, добавлен 10.03.2020Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.
автореферат, добавлен 19.08.2018- 115. Численные методы
Теория и учет погрешности приближенных вычислений. Абсолютная и относительная погрешности. Численные методы решения алгебраических, дифференциальных, трансцендентных уравнений. Система линейных и графических уравнений. Метод конечных разностей и итераций.
учебное пособие, добавлен 04.02.2015 Изучение прямых изоклин системы дифференциальных уравнений. Главные способы разбиения множества изоклин, теоремы и доказательства. Нахождение параллельных между собой прямых изоклин системы. Квадратичная дифференциальная система, её состояния равновесия.
статья, добавлен 27.09.2013Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.
автореферат, добавлен 17.12.2017Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.
реферат, добавлен 19.01.2015Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.
курс лекций, добавлен 30.07.2017Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.
контрольная работа, добавлен 23.06.2020Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.
курсовая работа, добавлен 25.03.2010Методика расчета нелинейных дифференциальных уравнений с частными производными, описывающих физические процессы. Этапы численного решения уравнений данного вида методом конечных разностей. Вычислительный шаблон для границы неправильной конфигурации.
курсовая работа, добавлен 10.12.2016Формирование умений и навыков решения текстовых задач, применения математики. Составление уравнений, связывающих величины и переменные, математической модели, которая представляет собой уравнение. Решение системы уравнений наиболее рациональным способом.
статья, добавлен 15.03.2019Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010Характеристика модели инфекционного заболевания, представляющей собой систему из четырех дифференциальных уравнений с запаздывающим аргументом. Доказательство экспоненциальной устойчивости стационарного решения задачи математического моделирования.
статья, добавлен 27.04.2017