Некоторые вопросы спектральной теории дифференциальных операторов в частных производных
Оценка разности спектральных функций для степени оператора Лапласа. Обратные задачи спектрального анализа и интерполяция. Восстановление потенциала в обратной задаче спектрального анализа для возмущенной степени оператора Лапласа в пространстве R2.
Подобные документы
Численный метод нахождения значений собственных функций дискретных полуограниченных снизу операторов. Оценки остатков сумм рядов Рэлея–Шредингера поправок теории возмущений. Вычисление оператора Лапласа с возмущающей функцией комплексного переменного.
статья, добавлен 31.05.2013Проведение анализа известных численных методов построения приближений, сходящихся к спектральному радиусу оператора и к собственным векторам. Определение значения спектрального радиуса оператора и разработка алгоритмов решения операторных уравнений.
автореферат, добавлен 10.12.2013Изучение поведения решений дифференциального уравнения. Вычисление асимптотики собственных значений дифференциального оператора. Выведение асимптотика решений соответствующего дифференциального уравнения при больших значениях спектрального параметра.
статья, добавлен 21.06.2018Характеристика математичних моделей людини-оператора у вигляді послідовного та паралельного з`єднань інерційних ланок першого порядку. Дослідження алгоритмічної структури оператора за допомогою рівнянь Ейлера, Нав’є-Стокса і перетворення Лапласа.
статья, добавлен 29.09.2018Основные понятия операционного исчисления, оригинала и изображения, соответствие между ними. Некоторые свойства преобразования и формула Лапласа. Таблица изображений простейших функций, изображения заданной функции и восстановление оригинала по нему.
лекция, добавлен 29.09.2014Разработка Лапласом методов математической физики при решении прикладных задач. Развитие теории ошибок и приближений методом наименьших квадратов. Уравнение Лапласа в случае пространственных переменных. Уравнение Лапласа в двумерном пространстве.
реферат, добавлен 22.11.2015Ознакомление с алгоритмом построения трансляционных матриц для неоднородных дифференциальных операторов на примере уравнения Пуассона. Рассмотрение и характеристика особенностей операторов Лапласа и Гельгольца в задачах электростатики и электродинамики.
статья, добавлен 29.07.2016Изучение понятия обратимости операторов. Решение точных и соответствующих им приближенных уравнений. Обратимость аппроксимирующих операторов. Разрешимость и оценка погрешности. Исследование связи между обратимостью оператора и разрешимостью уравнения.
курсовая работа, добавлен 22.04.2011Единичная функция Хевисайда и импульсная функция Дирака. Характеристика свойств аналитичности преобразования Лапласа. Первая и вторая теоремы разложения. Обратное преобразование Лапласа. Примеры восстановления непрерывной функции-оригинала по изображению.
презентация, добавлен 23.09.2017Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
презентация, добавлен 26.09.2017Расчет формулы преобразования Лапласа для алгебраизации дифференциальных уравнений, ее свойства: линейность, дифференцирование оригинала, свертка, запаздывание, сдвиг и масштабирование. Расчет функций Хевисайда и Дирака и применение теоремы о вычетах.
презентация, добавлен 20.02.2014Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018- 14. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Задача Шварца для вектор-функций, аналитических по Дуглису. При выполнении определенных условий на матрицу она сведена к задаче Дирихле для равносильной ей системы однородных линейных дифференциальных уравнений в частных производных второго порядка.
статья, добавлен 31.05.2013Роль функциональных моделей в теории оператора. Совокупность гильбертовых пространств и операторов. Характеристическая функция узла. Минимальная J-унитарная дилатация. Ортопроекторы на подпространства Харди, отвечающие верхней и нижней полуплоскости.
статья, добавлен 30.10.2016Характеристика особенностей теоремы Муавра-Лапласа - одной из предельных теорем теории вероятностей. Сущность первообразной функции Гаусса. Формула Ньютона-Лейбница. Стандартный интеграл Лапласа. Теорема сложения вероятности для несовместных событий.
реферат, добавлен 02.01.2013Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011Исследование поведения функции кратности непрерывного спектра самосопряженного дифференциального оператора, порожденного формально самосопряженным дифференциальным выражением в гильбертовом пространстве. Обоснование результатов комплексного анализа.
статья, добавлен 03.03.2018- 20. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядка
Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016 Получение Lp-Lq - оценок для оператора Бохнера-Рисса и акустического потенциала комплексного порядка. Рассмотрение вопроса об ограниченности из Lp в Lq операторов исследуемого вида, ядра и символы которых одновременно осциллируют на бесконечности.
автореферат, добавлен 01.05.2018Прямое и обратное преобразование Лапласа. Теорема об изображении периодических оригиналов и о дифференцировании оригиналов. Поиск изображения функции, заданной формулой и графически. Примеры решения дифференциальных уравнений операционным методом.
реферат, добавлен 22.10.2015Определение и характерные свойства мероморфной функции, исследование ее асимптотики. Изучение и доказательство теоремы единственности, а также методика получения конструктивной процедуры решения обратной задачи для пучков дифференциальных операторов.
статья, добавлен 22.02.2015Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014Получение алгоритма решения обратной задачи для оператора Штурма-Лиувилля, определяемого уравнением и краевыми условиями. Доказательство теоремы о существовании и асимптотическом поведении собственных значений. Построение операторов преобразования.
курсовая работа, добавлен 10.11.2017