Основы высшей алгебры
Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
Подобные документы
История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.
реферат, добавлен 21.03.2013Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.
презентация, добавлен 26.02.2015История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.
статья, добавлен 03.09.2011Современная формулировка великой теоремы Ферма. Доказательство: для всех троек (z,x,y) пифагоровых чисел; для всех членов семейства любой тройки пифагоровых чисел; для всех троек чисел, не больших числа z; для всех троек чисел натурального ряда чисел.
реферат, добавлен 30.03.2017Теорема Рибета и Мазура. Решение уравнения Ферма как решение алгебраического уравнения 3-й степени. Обоснование сравнения по нулевому рациональному модулю, свойства. Особенности подлинности теоремы Ферма и бесконечности регулярных простых чисел.
статья, добавлен 03.03.2018Использование десятичной системы счисления как один из наиболее важных факторов, от которых зависят основные свойства редукции натуральных чисел. Специфические особенности доказательства операции суммарного редуцирования любого натурального числа.
статья, добавлен 25.06.2018Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.
реферат, добавлен 10.01.2017- 33. Пьер де Ферма
Краткие биографические сведения о великом математике-алхимике Пьере де Ферма. Составление алгоритма, ставшего основой дифференциального исчисления. Развитие теории простых чисел ученым, спор с Декартом. "Малая теорема Ферма", ее доказательство Лейбницем.
реферат, добавлен 19.11.2009 Основы линейной и векторной алгебры. Пределы и непрерывность. Дифференциальное исчисление функций с одной и несколькими переменными. Зависимость производной от направления. Аналитическая геометрия и комплексные числа. Тригонометрическая форма записи.
курс лекций, добавлен 09.10.2013История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.
реферат, добавлен 29.08.2014Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.
реферат, добавлен 15.10.2021Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.
реферат, добавлен 27.03.2015Теория делимости, основанная на единственности разложения натурального числа на простые множители (основная теорема арифметики). Доказательство Э. Уайлсом гипотезы Шимуры-Таниямы. Главные особенности применения матриц и теории групп, результаты.
статья, добавлен 03.03.2018- 39. Числовые системы
Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.
реферат, добавлен 29.10.2013 Доказательство делимости чисел при сравнении по ненулевому рациональному модулю. Основные свойства сравнения по ненулевому рациональному модулю натуральных чисел. Описание отличия сравнимости по ненулевому рациональному модулю от обычного сравнения.
статья, добавлен 03.03.2018Доказательство делимости чисел при сравнении по ненулевому рациональному модулю. Основные свойства сравнения по ненулевому рациональному модулю натуральных чисел. Описание отличия сравнимости по ненулевому рациональному модулю от обычного сравнения.
статья, добавлен 03.03.2018Архимед и его формула для объёма шара. Теорема Ферма – Эйлера о представлении простых чисел в виде суммы двух квадратов. Философ и математик Лагранж и его теорема о четырех квадратах. Математическая деятельность Гаусса – открытие о семнадцатиугольнике.
книга, добавлен 13.01.2014Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011Изучение математического значения множества отображения. Анализ симметричности и транзитивности функций. Расчет мощности бесконечного множества. Обзор теоремы подмножеств линейного порядка натуральных чисел. Сопоставление произвольной совокупности.
лекция, добавлен 18.10.2013Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.
курсовая работа, добавлен 26.09.2009Отыскание простых множителей натурального числа. Известный алгоритм Евклида для отыскания наибольшего общего делителя двух чисел как прием факторизации. Факторизация по разности квадратов. Упрощение вычислений с помощью знаний признаков делимости.
статья, добавлен 15.09.2012Число, как основное понятие математики. Начало тождественности, принцип формы неопределенной двоицы. Абстрактное отношение величины к другой величине и аксиоматическое построение математической теории. Функции чисел и характеристика количества предметов.
реферат, добавлен 05.10.2015Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.
курсовая работа, добавлен 03.05.2014Множество действительных чисел. Действия над комплексными числами в алгебраической форме. Четность, нечетность, монотонность, периодичность функции. Теоремы о пределах, формулы, свойства логарифмов. Радианная и градусная меры углов. Периодические функции.
шпаргалка, добавлен 04.05.2011Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.
курс лекций, добавлен 15.09.2017