Множественная корреляция

Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.

Подобные документы

  • Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.

    курсовая работа, добавлен 19.06.2015

  • Дисперсионный анализ в математической статистике как самостоятельный инструмент статистического анализа, его понятие и применение в эконометрике как вспомогательного средства для изучения качества регрессионной модели. Линейный коэффициент корреляции.

    лекция, добавлен 25.04.2015

  • Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.

    лекция, добавлен 25.04.2015

  • Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.

    презентация, добавлен 23.04.2015

  • Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.

    презентация, добавлен 05.06.2012

  • Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.

    практическая работа, добавлен 28.03.2020

  • Вектор оценок параметров регрессионного уравнения. Классическая оценка ковариационной матрицы метода наименьших квадратов, оценка параметров. Разработка программного обеспечения. Дисперсия ошибки. Однородные группы наблюдений, формула Стерджесса.

    статья, добавлен 02.02.2019

  • Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.

    курсовая работа, добавлен 15.05.2013

  • Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.

    статья, добавлен 27.12.2020

  • Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Распределение оценок коэффициентов в асимптотике. Проверка значимости коэффициентов множественной регрессии по критерию Стьюдента. Предсказание среднего значения зависимой переменной.

    лекция, добавлен 15.06.2014

  • Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

    контрольная работа, добавлен 23.05.2021

  • Рассмотрение задачи оценки параметров нелинейной регрессии при отсутствии априорной информации о линейно входящих параметрах. Проблема обеспечения оценивания параметров сходимости алгоритма за приемлемое количество итераций в нелинейных задачах.

    статья, добавлен 25.02.2013

  • Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.

    контрольная работа, добавлен 17.05.2019

  • Использование метода наименьших квадратов для отыскания приближенных зависимостей между изучаемыми экспериментальными величинами. Решение уравнений в матричном виде. Нахождение интервальных оценок неизвестных параметров и доверительного интервала.

    курсовая работа, добавлен 05.05.2014

  • Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.

    контрольная работа, добавлен 11.04.2016

  • Задачи корреляционно-регрессионного анализа. Корреляция случайных величин. Линейная регрессия, описание объекта, факторы, формирующие моделируемое явление. Анализ матрицы коэффициентов парных корреляций. Построение уравнения регрессии, смысл модели.

    реферат, добавлен 20.03.2010

  • Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.

    практическая работа, добавлен 31.10.2014

  • Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.

    контрольная работа, добавлен 09.06.2015

  • Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.

    статья, добавлен 24.02.2019

  • Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.

    статья, добавлен 02.02.2019

  • Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.

    контрольная работа, добавлен 26.06.2014

  • Вычисление коэффициентов регрессии и выявление тенденции развития процессов. Обработка табличных данных. Отчет кредитной организации о прибыли, убытка. Корреляционный анализ. Парная и множественная регрессии. Решение математических задач средствами Excel.

    контрольная работа, добавлен 05.06.2022

  • Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.

    презентация, добавлен 13.07.2015

  • Многомерные совокупности. Методы обработки матрицы. Оценки математического ожидания. Виды зависимостей между величинами: функциональная и статистическая. Корреляционная зависимость. Оценка корреляционного момента. Выбор вида уравнения регрессии.

    контрольная работа, добавлен 29.11.2011

  • Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.

    реферат, добавлен 08.02.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.