Способы преобразования чертежей

Общие сведения о преобразовании комплексного чертежа, описание его способов: плоскопараллельного переноса, замены плоскостей проекций и вращения. Изменение положения геометрической фигуры в пространстве посредством плоскопараллельного перемещения.

Подобные документы

  • Определение площади плоской фигуры, объема тел вращения, образованных при вращении вокруг оси, с помощью определенного интеграла. Понятие несобственного интеграла с бесконечными пределами интегрирования, несобственные интегралы от разрывных функций.

    лекция, добавлен 09.04.2018

  • Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.

    лекция, добавлен 03.04.2019

  • Понятие суждения, содержащего новое знание, которое может быть получено посредством преобразования некоторого суждения, при этом исходное суждение рассматривается как посылка, а суждение, полученное в результате преобразования, как умозаключение.

    контрольная работа, добавлен 25.02.2010

  • Сущность аксонометрического проектирования, виды проекций. Определение величин углов между осями стандартных аксонометрических проекций. Прямоугольная изометрия и диметрия. Коэффициент искажения (вывод) и углы между осями; построение геометрических фигур.

    контрольная работа, добавлен 20.01.2013

  • Анализ аксиом о взаимном расположении точек, прямых и плоскостей в пространстве. Характеристика прямоугольной системы координат в промежутке. Свойства аффинных и метрических преобразований в стереометрии. Суть векторного решения стереометрических задач.

    курсовая работа, добавлен 18.10.2015

  • Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.

    курсовая работа, добавлен 08.12.2015

  • Метод координат как один из главных способов определения положения точки и тела с помощью чисел или других символов. Базис пространства - любая упорядоченная тройка некомпланарных векторов. Основные условия существования декартовой системы координат.

    контрольная работа, добавлен 24.05.2017

  • Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.

    курс лекций, добавлен 27.08.2017

  • Исследование проекционных способов начертательной геометрии, дающих возможность получать наглядные изображения проектируемых объектов и комплексов. Рассмотрение аксиомы Евклида о параллельности. Изучение классификации проекций и примеров их построения.

    реферат, добавлен 23.12.2013

  • Определение тела вращения. Виды, сечения вращения цилиндра, конуса и шара. Расчеты и формулы для определения площади поверхности этих геометрических тел. Варианты взаимного расположения сферы и плоскости. Практические примеры решения задач по геометрии.

    презентация, добавлен 10.05.2015

  • Особенность построения решения в евклидовом пространстве. Главная сущность составления системы уравнений Эйлера. Основной анализ определения функционала с помощью выбора пространственной кривой. Характеристика изображения плоскостей в пакете Maple.

    лекция, добавлен 02.05.2015

  • Построение чертежа на клетчатой бумаге или на координатной плоскости с выделенными целочисленными координатами характеристических точек фигуры или графика функции. Построение описанной окружности девяти точек для треугольников с углом 45 или 135 градусов.

    статья, добавлен 25.02.2016

  • Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.

    методичка, добавлен 16.09.2017

  • Задачи, приводящие к понятию определенного интеграла, сфера его применения и геометрический смысл. Вычисление площади плоской фигуры. Объёмы тел вращения. Характеристика кривых, встречаются при вычислении определенного интеграла. Исчисление длины дуги.

    дипломная работа, добавлен 14.05.2011

  • Общие сведения о системах дифференциальных уравнений. Критерий линейной независимости, определитель Вронского. Метод сведения к одному уравнению более высокого порядка. Решение видоизмененным методом Эйлера и способом неопределенных коэффициентов.

    реферат, добавлен 27.12.2013

  • Общая характеристика математическое обоснование свойств, структура и компоненты тел вращения: цилиндр, конус и шар. Объемы многогранников, тел с известными площадями поперечных, сечений. Определение и расчет параметров площади поверхности тел вращения.

    реферат, добавлен 04.04.2016

  • Наиболее древние способы вычисления. Ознакомление с особенностями применения нестандартных способов умножения чисел. Рассмотрение примеров итальянского и японского способов умножения, которые можно использовать во внеурочной деятельности учеников.

    статья, добавлен 01.03.2019

  • Координаты вектора в прямоугольном трехмерном пространстве. Представление заданного вектора в сферических координатах. Сопутствующий параллелепипед и его три диагонали. Формы преобразования прямоугольных координат в различные сферические координаты.

    практическая работа, добавлен 19.01.2011

  • Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.

    лекция, добавлен 07.07.2015

  • Основы теории построения чертежа. Свойства ортогонального проецирования. Теорема о проецировании прямого угла. Правила задания прямой на комплексном чертеже. Определение натуральной величины отрезка. Взаимное расположение двух прямых в пространстве.

    курс лекций, добавлен 07.11.2012

  • Характеристика требований, предъявляемых к выполнению чертежей. Методы построения лекальных кривых и касательных к ним. Построение трех видов и аксонометрической проекции предмета по двум данным. Основные положения и определения проекционного черчения.

    методичка, добавлен 29.01.2020

  • Исследование классификационных методов отображения плоскости на себя. Определение равенства геометрических фигур. Свойства параллельного переноса точки в плоскости. Принципы осевой и центральной симметрий в отношении прямой. Коэффициенты гомотетии.

    краткое изложение, добавлен 17.03.2014

  • Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.

    статья, добавлен 15.01.2019

  • Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.

    задача, добавлен 05.05.2015

  • Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.

    курсовая работа, добавлен 01.12.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.