Фабрика парадоксальных комбинаторных эффектов – игра Пенни
Российская вероятностная школа Колмогорова. Восприятие вероятностей по Мизесу как физического процесса. Расчёты различных состояний в парадоксальной игре Пенни при модификациях этой игры, объяснение которых базируется на идеях Мизеса о "коллективах".
Подобные документы
Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.
реферат, добавлен 26.02.2010Анализ основных проблем, возникающих в процессе преподавания математики в средней школе. Характеристика функций, которые выполняют математические игры, описание их основных видов, анализ методов применения. Изучение требований к игровым формам занятий.
доклад, добавлен 16.08.2017Понятие об игровых моделях разрешения конфликтной ситуации. Виды и основные правила формализованной игры. Специфика определения оптимальной стратегии для каждого игрока. Алгоритм определения нижней и верхней цен игры, заданной платежной матрицей.
реферат, добавлен 12.07.2015Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.
презентация, добавлен 24.06.2014- 55. Теория игр
Верхняя и нижняя цена игры, проверка на наличие седловой точки. Возможность как наихудшего, так и наилучшего для человека поведения природы. Принцип недостаточного основания Лапласа. Критерий минимального риска Севиджа. Проверка правильности решения игры.
контрольная работа, добавлен 07.05.2013 - 56. Теория игр
Изучение понятий теории игр. Порядок составления платежной матрицы. Смешанное расширение матричной игры. Доминируемые стратегии в теории игр. Процесс создания математической игровой модели. Матричная игра в чистых стратегиях, ее взаимосвязь с природой.
контрольная работа, добавлен 15.02.2015 Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Использование метода Брауна и симплекс-метода для определения оптимальной стратегии игрока и максимального значения выигрыша. Расчет цены игры, ее проверка на наличие седловой точки.
контрольная работа, добавлен 03.05.2013Знаходження непокращуваних нерівностей для похідних функцій зі спеціальних функціональних класів, розв'язок задачі про наближення необмежених операторів лінійними операторами. Узагальнена задача Колмогорова про існування елемента нормованого простору.
автореферат, добавлен 20.07.2015- 59. Построение математической модели процесса охлаждения потока движущей среды в пространстве состояний
Применение спектральной теории для построения математической модели процесса охлаждения потока движущейся среды в пространстве состояний. Сравнение переходного процесса модели с переходным процессом эталонной модели, полученной операторным методом.
статья, добавлен 28.01.2020 Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015Алгоритм получения оптимального решения игры, не имеющей седловой точки, при помощи метода чередования чистых стратегий. Геометрическая интерпретация игры 2х2. Порядок и особенности определения оптимальных стратегий игроков геометрическим методом.
реферат, добавлен 12.07.2015Сущность и структурные компоненты дидактической игры, ее признаки и правила. История возникновения и особенности славянского алфавитного обозначения чисел. Разработка теории чисел математиками античного мира. Содержание и доказательство теорем Ферма.
реферат, добавлен 04.04.2013- 63. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
реферат, добавлен 22.06.2016 Анализ критерия согласия Колмогорова и омега-квадрата в случае простой гипотезы. Критерии согласия Пирсона и Фишера и их применение в математической статистике. Использование этой категории для распределения Пуассона. Случаи практического применения.
курсовая работа, добавлен 29.08.2014Случайные процессы, их эквивалентность и тождественность. Семейство конечномерных распределений процесса. Ковариационная функция, нормально-распределённая случайная величина, одномерный Гауссовский процесс. Теорема Колмогорова (о модификации процесса).
краткое изложение, добавлен 27.02.2010Исходная постановка задачи: исследование одного класса карточных игр для одного или более игроков. Построение классов эквивалентности. Результаты для игры с двумя игроками. Количество правильных игр. Преобразования конечных двоичных последовательностей.
контрольная работа, добавлен 07.09.2009Основные этапы и подходы к разработке двухуровневой иерархической игры с бескоалиционным вариантом на нижнем уровне иерархии при использовании аналога решения по Штакельбергу и концепции равновесия по Бержу-Вайсману. Анализ полученных неравенств.
статья, добавлен 04.03.2021- 68. Непараметрические критерии согласия Колмогорова, Смирнова, омега-квадрат и ошибки при их применении
Анализ работ А.Н. Колмогорова и Н.В. Смирнова, посвященных односторонним и двухсторонним критериям согласия и однородности. Рассмотрение типовых ошибок при применении перечисленных критериев для проверки нормальности распределения результатов измерений.
статья, добавлен 14.05.2017 Изучение игры в нормальной форме, участниками которой являются преподаватель и учащийся высшего учебного заведения. Рассмотрение процесса формирования матрицы выигрышей. Анализ теории игр — математического метода изучения оптимальных стратегий в играх.
статья, добавлен 20.05.2017Характеристика математической модели реальной конфликтной ситуации. Особенность формализации игры. Главный анализ нижней и верхней цены игрового процесса. Седловая точка в платежной матрице. Решение системы в смешанных стратегиях геометрическим методом.
реферат, добавлен 17.06.2015Популярная игра крестики-нолики на бесконечном поле (рэндзю), история появления, правила, игровое поле. Математические головоломки, развивающие пространственное воображение и логическое мышление. Способ заполнения магического квадрата. Задачи со спичками.
контрольная работа, добавлен 28.03.2013Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.
курсовая работа, добавлен 28.02.2016Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.
статья, добавлен 30.10.2016Отримання точних нерівностей для норм проміжних похідних функцій та розв'язання на цій основі важливих екстремальних задач аналізу. Вивчення тригонометричних поліномів і поліноміальних сплайнів. Взаємозв'язки точних нерівностей типу Колмогорова.
автореферат, добавлен 13.07.2014Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.
контрольная работа, добавлен 18.05.2013