Введение в математический анализ
Рассмотрение определения монотонных и немонотонных последовательностей. Использование формулы бинома Ньютона в расчете предела числа е. Подпоследовательности и их свойства. Изучение доказательства теоремы Больцано-Вейерштрасса в математическом анализе.
Подобные документы
Математические законы теории вероятностей. Рассмотрение статистических закономерностей, свойственных массовым явлениям. Сходимость последовательностей случайных величин. Изучение закона больших чисел. Возможности предсказаний массовых случайных явлений.
лекция, добавлен 18.03.2014Приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника. Рассмотрение полной формулы теоремы Пифагора. Математический расчет суммы квадратов длин катетов. Количественные оценки параметров прямоугольного треугольника на плоскости.
статья, добавлен 26.01.2019Выведены формулы для решений уравнения Пифагора, они отличаются от общеизвестных формул древних. Формулы могут быть использованы для доказательства большой теоремы Ферма, методом бесконечного спуска, для всех нечётных значений показателя степени n.
статья, добавлен 07.06.2008Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Понятие показательной функции и методы построения ее графиков. Основные свойства функции: четность; убывание; ограничение сверху и снизу; непрерывность. Определение логарифмической функции в математическом анализе и теории дифференциальных уравнений.
презентация, добавлен 05.03.2012Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Ознакомление с основными методами расширения числовых множеств от натуральных до комплексных, как способами построения нового математического аппарата. Рассмотрение особенностей решения уравнений с комплексной переменной. Изучение теоремы Виета.
контрольная работа, добавлен 20.11.2016Приведены формулы, устанавливающие связь между цугами и составными событиями бинарной последовательности. Доказана теорема: "Формула для цуг из составных событий", что переводит комбинаторику длинных последовательностей на физико-математический уровень.
статья, добавлен 11.07.2018История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
реферат, добавлен 08.05.2012Математические предложения и их доказательства в курсе геометрии основной школы. Индукция и дедукция как основные приемы обоснования математических предложений. Воспитание потребности в логическом доказательстве. Методика изучения конкретной теоремы.
контрольная работа, добавлен 02.04.2016Теорема Пифагора - фундамент, базис и основа всех математических вычислений, расчетов и многих изобретений. Использование информационных технологий в обучении геометрии. Доказательства, обобщение, области применения результатов теоремы Пифагора.
реферат, добавлен 04.11.2014Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.
задача, добавлен 17.02.2016Определение предела функции f(x) в точке x0 по Гейне и Коши. Основные свойства пределов. Понятие предела функции в точке. Основные теоремы о пределах, признаки их существования. Определение предела частного и произведения двух функций, сложной функции.
контрольная работа, добавлен 27.04.2015Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.
методичка, добавлен 07.10.2015Математическое понятие и сущность функции. Свойства и графики функций. Определение первообразной функции. Общие правила обобщения степени. Характеристики первообразной и интеграла. Нахождение натурального логарифма числа в математическом анализе.
лекция, добавлен 18.05.2015Термин "комбинаторика" и его введение в математический обиход знаменитым Лейбницем. Использование комбинаторики при решении задач алгебры, геометрии, производящих функций. Основные правила – суммы и произведения. Формулы размещений без повторений.
реферат, добавлен 24.04.2015Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.
реферат, добавлен 03.04.2017Изучение особенностей и причин создания логарифмов. Рассмотрение методов их решения. Основы расчета области определения логарифмической функции. Рассмотрение функций формулы преобразования. Характеристика аспектов метода введение новой переменной.
презентация, добавлен 16.01.2014Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.
курсовая работа, добавлен 10.12.2017Биография Пифагора. Неалгебраические доказательства теоремы. Древнекитайское, древнеиндийское доказательство. Доказательство Евклида. Алгебраические доказательства теоремы. Первое и второе доказательство. Определение косинуса угла. Головоломка "Пифагор".
реферат, добавлен 30.01.2016Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.
курс лекций, добавлен 07.03.2015Определение и анализ вероятностей событий. Рассмотрение формулы полной вероятности. Изучение формулы Бернулли. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Ознакомление с законом распределения случайной величины.
контрольная работа, добавлен 24.03.2017Нахождение производной как основная задача дифференциального исчисления. Первообразная функция на интервале оси. Рассмотрение свойств неопределенного интеграла. Методы интегрирования в математическом анализе. Подведение функции под дифференциал.
лекция, добавлен 17.01.2014Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.
презентация, добавлен 17.09.2013Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.
учебное пособие, добавлен 29.01.2014