Похідна та її застосування

Основні теоретичні відомості: походження поняття похідної; зростання та спадання функції; найбільше та найменше значення функції; означення дотичної. Правила диференціювання; застосування похідної для розв'язування рівнянь. Текстові задачі на екстремум.

Подобные документы

  • Вивчення теми "Квадратні рівняння" у середній школі та її застосування. Означення та види квадратних рівнянь, способи їх розв’язування, застосування теореми Вієта. Розклад квадратного тричлена на лінійні множники. Методика вивчення квадратних рівнянь.

    курсовая работа, добавлен 12.12.2018

  • Поняття оберненої функції. Властивості тригонометричної аркфункції, застосування її властивостей до розв'язування вправ. Утворення назви оберненої тригонометричної функції. Графіки функції, тригонометричні рівняння. Обчислення арккосинуса від'ємних чисел.

    презентация, добавлен 14.11.2018

  • Встановлення більш точних оцінок логарифмічної похідної мероморфних і субгармонійних функцій. Доведення аналогу леми про логарифмічну похідну для субгармонійних функцій. Сучасні проблеми та теоретичні моделі в лінійних та диференціальних алгебрах.

    автореферат, добавлен 12.07.2015

  • Системи лінійних рівнянь, їх визначники другого і третього порядків. Формула Ньютона-Лейбніца та обчислення площ плоских фігур в прямокутній системі координат. Основні правила диференціювання і похідні будь-яких елементарних функцій та вищих порядків.

    курс лекций, добавлен 14.12.2013

  • Табличний, графічний та аналітичний способи задавання функції, їх властивості. Способи розв'язання текстових задач, заданих множиною точок координатних площин. Область визначення функції, заданої формулою. Алгоритм розв’язання рівнянь графічним способом.

    курсовая работа, добавлен 25.04.2020

  • Застосування методу Ньютона для системи двох нелінійних рівнянь. Чисельне розв’язування інтегральних рівнянь: розв’язування рівнянь Фредгольма методом кінцевих сум. Інтерполяційні формули Гаусса, Стірлінга, Бесселя. Квадратурні формули Чебишева та Гаусса.

    контрольная работа, добавлен 15.01.2020

  • Загальні відомості про алгебраїчні рівняння вищих порядків. Загальні відомості про алгебраїчні рівняння вищих порядків. Застосування теореми Безу та схеми Горнера при розв’язанні алгебраїчних рівнянь. Використання методу невизначених коефіцієнтів при вирі

    курсовая работа, добавлен 30.11.2015

  • Математичне моделювання у задачах економічного змісту. Системи лінійних рівнянь з двома змінними, рівняння бюджетної лінії, закон Госсена. Розв'язування задач на знаходження ринкової рівноваги. Задачі на визначення наборів товару раціональним споживачем.

    контрольная работа, добавлен 24.01.2018

  • Викладення диференціального числення функцій багатьох змінних: визначення та позначення частинних похідних першого порядку та другого порядку певної функції; знаходження частинної похідної за правилами та формулами диференціювання функції однієї змінної.

    лекция, добавлен 30.04.2014

  • Означення, геометричний та механічний зміст диференціала, його основні властивості. Застосування диференціала в наближених обчисленнях значення функції та її приросту, наближене обчислення степенів, коренів, обернених чисел. Диференціали вищих порядків.

    лекция, добавлен 08.08.2014

  • Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.

    статья, добавлен 25.03.2016

  • Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.

    курсовая работа, добавлен 02.01.2014

  • Застосування методів аналітичної геометрії, векторної алгебри, тригонометрії. Застосування геометричних співвідношень до доведення нерівностей. Визначення нерівності трикутника. Застосування векторів та похідної. Дослідження екстремальних властивостей.

    учебное пособие, добавлен 13.07.2017

  • Застосуванню тригонометрії до розв'язування задач з алгебри у старшій школі. Методичні особливості застосування тригонометрії до розв'язування. Встановлення коренів рівняння на певному відрізку. Розв'язування системи рівнянь і доведення нерівності.

    статья, добавлен 05.02.2019

  • Обґрунтування ітераційного методу знаходження одного з розв’язків системи задач на власні значення. Аналіз узагальнення класичного методу скалярних добутків визначення "старшої" пари матриці. Збіжність методу, основні приклади його застосування.

    статья, добавлен 30.01.2017

  • Означення обернених тригонометричних функцій: основні відношення та процес їх диференціювання. Графіки і властивості функцій. Особливості вивчення математики у профільних класах в сучасних умовах. Основні положення профільної диференціації навчання.

    конспект урока, добавлен 19.12.2012

  • Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.

    автореферат, добавлен 28.09.2015

  • Загальна задача розв'язування алгебраїчних та трансцендентних рівнянь з однією змінною. Теорема про оцінку похибки наближеного значення кореня. Розв'язування алгебраїчних і трансцендентних рівнянь з однією змінною методом ітерацій. Відокремлення коренів.

    методичка, добавлен 16.06.2014

  • Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.

    курсовая работа, добавлен 18.12.2012

  • Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.

    автореферат, добавлен 27.04.2014

  • Прямі і ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь. Методи визначення коренів нелінійних рівнянь. Знаходження власних чисел і власних векторів матриць. Кубічна сплайн-інтерполяція, чисельне розв’язування задачі Коші для рівняння.

    учебное пособие, добавлен 27.08.2017

  • Застосування формулювання властивостей перпендикулярів, похилих та проекцій для розв'язування задач. Дослідження означення прямокутного трикутника та властивостей його сторін. Розгляд теореми Піфагора. Проведення до прямої перпендикуляра і похилої.

    конспект урока, добавлен 10.09.2018

  • Необхідні передумови для формування поняття функції. Її аргументи та область визначення. Підмножина координатної площини та паралельне перенесення на вектор уздовж осі ординат. Періодичність тригонометричних функцій. Ознаки їх зростання та спадання.

    курс лекций, добавлен 25.01.2014

  • Удосконалення методики вивчення похідної у старшій школі шляхом посилення прикладної спрямованості навчання та використання у навчальному процесі прикладних задач. Підготовка добірки прикладних задач з алгебри, для класів декількох напрямів профілізації.

    статья, добавлен 26.03.2016

  • Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.

    статья, добавлен 25.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.