Поиск кратчайших путей в графе методом динамического программирования

Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.

Подобные документы

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

  • Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.

    учебное пособие, добавлен 13.01.2014

  • Порядок и принципы построения алгоритма, основанного на взаимодействиях параллельно работающих компонентов. Представление параллельных алгоритмов, реализованное в виде дуальных графов или матрично-предикатном виде. Преимущества подобного представления.

    статья, добавлен 30.07.2017

  • История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

    презентация, добавлен 28.02.2012

  • Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

    курсовая работа, добавлен 22.06.2014

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Анализ определений внутренних и внешних устойчивых множеств на графе с определением его ядра. Обзор построения нелокальных правил коллективных решений. Нахождение значений векторов турнирной матрицы, методом индивидуальных порядков линейной алгебры.

    лекция, добавлен 29.09.2013

  • Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.

    учебное пособие, добавлен 15.10.2016

  • Математическое моделирование задач электроэнергетики с помощью аппарата линейной алгебры, теории графов. Расчёт установившихся режимов электрических систем, не содержащих и содержащих контур. Вероятностно–статистические методы в задачах электроснабжения.

    курсовая работа, добавлен 13.11.2014

  • Построение модели системы организации маршрутов в транспортной системе с предфрактальных графов. Сравнительный анализ вычислительной сложности предложенного алгоритма с известным алгоритмом Прима. Алгоритм Бета 2 выделения наибольших максимальных цепей.

    реферат, добавлен 20.05.2017

  • Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.

    курсовая работа, добавлен 28.05.2019

  • Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.

    реферат, добавлен 17.06.2014

  • Программирование в управлении как процесс распределения ресурсов. Определение метода и задачи квадратичного программирования. Анализ конечного алгоритма решения задачи квадратичного программирования. Применение конечного алгоритма решения на практике.

    курсовая работа, добавлен 23.02.2014

  • Сущность и формальное определение алгоритма на графах, изобретенного нидерландским ученым Э. Дейкстрой. Принципы использования массивов чисел в простейшей реализации для хранения чисел. Анализ сложности алгоритма и доказательство его корректности.

    реферат, добавлен 07.05.2011

  • Сущность проблемы асимптотического поведения функции количества путей. Рассмотрение конечных и бесконечных древовидных граф с одной особой вершиной в корне, анализ регулярных граф с одной особой вершиной. Разработка алгоритмов на языках WolframLanguage.

    дипломная работа, добавлен 28.08.2020

  • Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.

    шпаргалка, добавлен 08.09.2013

  • Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.

    презентация, добавлен 21.09.2017

  • Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.

    контрольная работа, добавлен 25.10.2013

  • Решение дробно-рациональных и импульсных функции. Преобразование Фурье и Лапласа. Операторный метод решения дифференциальных уравнений. Понятие линейного динамического звена и его временные характеристики. Частотные характеристики динамического звена.

    курс лекций, добавлен 13.07.2012

  • Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.

    курсовая работа, добавлен 11.06.2013

  • Сущность задачи о потоке минимальной стоимости: нахождение оптимального способа передачи потока через транспортную сеть. Использование потенциалов, решение задачи без отрицательных рёбер. Применение на первом шаге алгоритмов Беллмана-Мура, Дейкстры.

    творческая работа, добавлен 16.06.2012

  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие, добавлен 11.10.2014

  • Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.

    реферат, добавлен 15.08.2014

  • Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.

    статья, добавлен 26.05.2017

  • Мультиграф, в котором не допускаются петли, но пары вершин могут соединяться более чем одним ребром. Теоретико-множественное представление графов. Вид двоичного дерева поиска, в котором ключами являются латинские символы, упорядоченные по алфавиту.

    курсовая работа, добавлен 15.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.