Ряды Фурье
Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.
Подобные документы
Основные тригонометрические тождества: формулы привидения, сложения, двойного и половинного угла, преобразования сумм тригонометрических функций в произведение. Графики и свойства обратных тригонометрических функций. Методы решения уравнений, неравенств.
контрольная работа, добавлен 16.06.2010Метод разложения на множители, его применение. Метод замены переменных и сведение к алгебраическим уравнениям. Универсальная тригонометрическая подстановка. Порядок введения вспомогательного аргумента. Решение системы тригонометрических уравнений.
методичка, добавлен 22.03.2014Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
учебное пособие, добавлен 18.06.2015Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
лекция, добавлен 23.07.2015Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.
контрольная работа, добавлен 16.12.2013Расчет корней алгебраического уравнения и системы алгебраических уравнений. Исследование функции одной или нескольких (двух) переменных, разложение функции в ряд Тейлора и ряд Фурье, вычисление производных и интегралов. Расчет вещественных корней.
учебное пособие, добавлен 10.04.2020Изучение античной греческой математики. Построение качественных, линейных количественных и нелинейных количественных моделей. Процесс структуризации данных. Уточнения и приближения. Корреляция и каузация. Аппроксимация функции конечным рядом Фурье.
контрольная работа, добавлен 29.10.2021Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012Знакомство с особенностями вычисления значения функции в заданной точке с помощью разложения в ряд Тейлора, анализ проблем. Общая характеристика гиперболических функций, способы определения. Рассмотрение вопросов о разложимости функции в ряд Тейлора.
контрольная работа, добавлен 18.09.2013Исследование понятия двойных и повторных рядов. Обобщение необходимых и достаточных признаков сходимости. Понятие знакопеременного ряда. Сущность признака Лейбница. Абсолютная и условная сходимость ряда. Понятие функционального ряда. Степенные ряды.
курсовая работа, добавлен 20.06.2013Рассмотрение достаточных условий разложимости функции в ряд Тейлора. Изучение и анализ процесса применения рядов в приближенных вычислениях. Определение разложения некоторых элементарных функций в ряд Маклорена. Исследование применения степенных рядов.
контрольная работа, добавлен 12.05.2023Геометрический и арифметический ряды. Свойства равномерно сходящихся рядов. Необходимый признак сходимости рядов. Интегральный признак сходимости ряда, ряд Дирихле. Знакочередующиеся и знакопеременные ряды. Абсолютная и условная сходимость рядов.
шпаргалка, добавлен 20.06.2009Обыкновенные дифференциальные уравнения, их характеристика и свойства. Типы уравнений с разделяющимися переменными, их структура и требования к решению. Достаточные признаки разложимости в ряд Фурье, порядок определения интегралов. Теорема Ляпунова.
курс лекций, добавлен 05.03.2016Вейвлет-анализ как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. Применение семейства анализирующих функций, называемых вейвлетами, для изучения и анализа изображений различной природы.
статья, добавлен 08.12.2018Числовые ряды: знакопостоянные и знакопеременные, функциональные и степенные ряды. Необходимые и достаточные признаки абсолютной и условной сходимости ряда, признак Коши; признак Даламбера. Указания по разложению функций в ряды Тейлора по степеням.
методичка, добавлен 05.04.2014Краткий обзор развития тригонометрии, ее возникновение как одного из разделов астрономии. Теоремы сложения: тригонометрические функции суммы и разности аргументов, двойного и половинного аргумента, тангенсов, формулы площади треугольника, другие формулы.
контрольная работа, добавлен 22.05.2009Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени
контрольная работа, добавлен 22.01.2012Развитие землемерения, астрономии и строительного дела как одни из причин возникновения тригонометрии. Характеристика ключевых свойств тригонометрических функций. Синус - отношение противолежащего катета к гипотенузе. Основные формулы двойного угла.
презентация, добавлен 03.04.2015Теория формальных степенных рядов. Алгебра Коши, операция подстановки одного степенного ряда в другой. Понятие экспоненциального ряда. Основной принцип теории производящих функций. Производящие функции числа основных комбинаторных объектов и выборок.
курсовая работа, добавлен 23.04.2011Произвольный электростатический или магнитный скалярный потенциал как функция пространственных координат. Уравнение Лапласа. Цилиндрическая система координат в виде ряда Фурье. Метод разделения переменных для определения распределений потенциалов.
реферат, добавлен 12.02.2013- 73. Сходимость рядов
Исследование сходимости рядов по признаку сходимости Даламбера. Определение интеграла с точностью до 0,001 путем предварительного разложения подинтегральной функции в ряд и почленного интегрирования этого ряда. Определение функции Лапласа.
контрольная работа, добавлен 18.03.2014 Временные ряды и их исследования. Методы анализа временных рядов: метод Гусеница, основные направления его использования, сравнение его с другими методами (автоагрессия, разложение Фурье, Параметрическая регрессия). Описание метода, теоретические аспекты.
курсовая работа, добавлен 29.05.2014Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.
статья, добавлен 31.05.2013