История развития тригонометрии и основные виды тригонометрических уравнений

Развитие землемерения, астрономии и строительного дела как одни из причин возникновения тригонометрии. Характеристика ключевых свойств тригонометрических функций. Синус - отношение противолежащего катета к гипотенузе. Основные формулы двойного угла.

Подобные документы

  • Рассмотрение особенностей арифметической и геометрической прогрессий. Таблица значений тригонометрических функций некоторых углов. Характеристика физических основ механики. Изучение законов электростатики. Основы электрического тока в металлах и газе.

    учебное пособие, добавлен 13.01.2014

  • Тригонометрические функции как подвид элементарных функций. Анализ четности и периодичности, особенности построения графиков. Обратные тригонометрические функции и их характеристика. История развития тригонометрии и основные сферы ее применения.

    презентация, добавлен 22.01.2013

  • Функциональная зависимость между пропорциональными величинами. Основные характеристики и свойства гиперболы. Форма и расположение квадратной параболы в системе координат. Графики тригонометрических функций вокруг биссектрисы 1-го координатного угла.

    контрольная работа, добавлен 15.01.2014

  • История происхождения тригонометрии как научного раздела астрономии, вклад ученых древности в ее развитие. Особенности применения математических знаний к решению задач повседневной практики, их использование в дальнейшей профессиональной деятельности.

    реферат, добавлен 20.01.2017

  • Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.

    реферат, добавлен 28.09.2014

  • Понятие и математическое описание рациональных уравнений и неравенств. Иррациональные уравнения и дробные неравенства. Особенности методов изучения тригонометрических и логарифмических уравнений. Трансцендентные неравенства и основные методы их решения.

    презентация, добавлен 08.09.2013

  • Рассмотрение основных свойств и графиков обратных тригонометрических функций. Существенные принципы преобразования выражений, содержащих эти функции. Обзор исторической справки. Изучение примеров решения уравнений. Задание различного уровня сложности.

    презентация, добавлен 04.12.2014

  • Актуальные вопросы теории приближений: исследование аппроксимативных возможностей конкретных аппроксимирующих конструкций, характеристики тригонометрических операторов, их норм и аппроксимационных констант. Основные свойства норм операторов Баскакова.

    статья, добавлен 31.05.2013

  • История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.

    курсовая работа, добавлен 29.10.2013

  • Преподавание математики в школе. Разработка и обоснование методики проведения курса по выбору "тригонометрия: от плоскости к пространству" на старшей ступени общего образования. Роль тригонометрии в учебном процессе. Место курса в школьной программе.

    дипломная работа, добавлен 03.07.2018

  • Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.

    презентация, добавлен 26.09.2017

  • Место, теоретическая основа, связи линейных, квадратных, кубических, логарифмических, показательных, тригонометрических уравнений в курсе математики средней школы. Практическое выявление самых распространенных в математике уравнений и способов их решения.

    научная работа, добавлен 08.11.2015

  • Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.

    реферат, добавлен 31.03.2014

  • Леонард Эйлер — швейцарский, немецкий и российский математик, внесший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлеровские исследования в области тригонометрии, комплексных чисел и графов.

    презентация, добавлен 10.04.2012

  • Исследование периодической функции, ее разложение в ряд Фурье. Вычисление значений тригонометрических полиномов в заданных точках. Построение графика многочлена третьей и восьмой степени. Определение погрешностей и расчет среднеквадратичных коэффициентов.

    задача, добавлен 23.11.2016

  • Решение квадратных уравнений с параметром. Краткие сведения о жизни и деятельности Франсуа Виета. Разработка им тригонометрии и приложение ее к решению алгебраических уравнений. Введение буквенного исчисления, изучение не чисел, а действий над ними.

    практическая работа, добавлен 05.12.2010

  • Понятие, свойства, графики элементарных функций. Характеристика степенной, квадратичной, показательной, логарифмической функций. Математическое описание обратно пропорциональной зависимости. Особенности графического изображения тригонометрических функций.

    реферат, добавлен 17.06.2014

  • История возникновения геометрии и тригонометрии. Первые методы нахождения неизвестных параметров треугольника. История жизни знаменитых геометров. Теорема Пифагора. Теория пределов. Понятие прямоугольной системы координат. Геометрические фигуры.

    реферат, добавлен 15.01.2013

  • Тригонометрические формулы, функции числового аргумента. Методика изучения числовой окружности как второй модели числового множества. Системы тригонометрических уравнений. Пример нахождения корней заданного уравнения, принадлежащего заданному промежутку.

    курсовая работа, добавлен 13.12.2021

  • Множество действительных чисел. Действия над комплексными числами в алгебраической форме. Четность, нечетность, монотонность, периодичность функции. Теоремы о пределах, формулы, свойства логарифмов. Радианная и градусная меры углов. Периодические функции.

    шпаргалка, добавлен 04.05.2011

  • Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.

    реферат, добавлен 12.09.2012

  • Неопределённый интеграл как совокупность всех первообразных данной функции. Основные приемы вычисления. Интегрирование дробно-рациональных и тригонометрических функций. Независимость от вида переменной. Интегрирование, содержащий квадратный трехчлен.

    презентация, добавлен 30.01.2015

  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций, добавлен 10.06.2015

  • Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.

    контрольная работа, добавлен 29.01.2013

  • Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.

    контрольная работа, добавлен 04.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.