Решение смешанной задачи для уравнения теплопроводности методом конечных разностей
Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
Подобные документы
Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Рассмотрение численного решения нелинейного уравнения, описывающего распространения нелинейных волн в двухфазных континуумах. Построение системы линейных алгебраических уравнений и решение данной задачи с использованием метода конечных разностей.
статья, добавлен 27.09.2012Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.
контрольная работа, добавлен 29.11.2016Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.
статья, добавлен 31.05.2013Вариационное исчисление решения задач, связанных с минимизацией функционала по уравнению Эйлера. Минимизация заданного функционала по методу Ритца. Графики приближения. Приближённое решение краевой задачи для уравнения Эйлера методом конечных разностей.
курсовая работа, добавлен 23.04.2011Расчет температур с учетом неоднородности теплофизических свойств материала пластинки переменной толщины. Использование переменной Кирхгофа для линеаризации краевой задачи теплопроводности. Сравнение полей температур узлов методом конечных элементов.
статья, добавлен 19.10.2019Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.
дипломная работа, добавлен 14.07.2016Изучение вопроса разрешимости задачи для нелинейного гиперболического уравнения на плоскости с двумя нелинейными краевыми условиями. Доказательство существования и единственности обобщенного решения задачи с двумя нелинейными граничными условиями.
статья, добавлен 31.05.2013Решение дифференциального уравнения, описывающего распространение тепла в области со сложной геометрией. Использование метода конечных элементов. Алгоритмы построения матрицы жесткости, задание граничных условий. Координаты в 3-х мерном пространстве.
контрольная работа, добавлен 14.09.2009Неопределенные, определенные и несобственные интегралы. Общее решение линейного дифференциального уравнения. Нахождение площади фигуры, ограниченной линиями. Частное решение дифференциального уравнения, удовлетворяющего заданным начальным условиям.
контрольная работа, добавлен 09.12.2012Вычислены матрицы Римана первого и второго рода гиперболической системы уравнений теплопроводности. Построено решение задачи Коши для гиперболической системы уравнений. Решение задачи граничного управления процессом теплопереноса в однородном теле.
автореферат, добавлен 17.12.2017Определение алгоритма, с помощью которого можно получить оптимальную оценку полезной составляющей измеряемых переменных. Система уравнений оценки вектора полезного сигнала. Решение системы уравнений методом Рунге Кутт или методом конечных разностей.
контрольная работа, добавлен 29.10.2013Общая характеристика линейной одномерной модели нестационарного процесса теплопроводности. Знакомство с основными особенностями решения граничных обратных задач теплопроводности на основе параметрической оптимизации. Рассмотрение уравнения Фурье.
статья, добавлен 28.01.2020Решение нелинейного уравнения методом хорд. Порядок определения корня нелинейного уравнения методом касательных (Ньютона). Особенности применения комбинированного метода хорд и касательных. Построение соответствующих блок-схем и написание текста программ.
контрольная работа, добавлен 29.10.2017Исследование нелокальной краевой задачи для смешанного параболо-гиперболического уравнения второго порядка с негладкими условиями сопряжения. Доказательство существования решения данной задачи. Решение интегрального уравнения Фредгольма второго рода.
статья, добавлен 15.05.2017Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.
курсовая работа, добавлен 04.02.2012Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Решение задачи граничного управления процессом теплопереноса в однородном материале в рамках гиперболической модели теплопроводности. Построение классов решений задачи в одномерных, двумерных и трехмерных средах, зависящих от функциональных параметров.
автореферат, добавлен 26.01.2018Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Поиск оптимального разрешения смешанной задачи в анизотропном полупространстве с ярко выраженной вертикальной проницаемостью сведением рассматриваемой задачи фильтрации к исследованию абстрактной начально-краевой задачи в банаховом пространстве.
статья, добавлен 31.05.2013Понятие о комплексном решении однородного линейного дифференциального уравнения. Решение задачи для линейного неоднородного дифференциального уравнения с постоянными коэффициентами с правой частью имеющей вид полинома и в случае различных корней.
контрольная работа, добавлен 04.12.2014Функция комплексного переменного. Примеры уравнений математической физики. Формулировка краевой задачи. Колебания бесконечной струны. Формула Даламбера решения задачи Коши для волнового уравнения. Уравнения теплопроводности. Математическая статистика.
практическая работа, добавлен 10.10.2023Исследование смешанной задачи для вырождающегося уравнения гиперболического типа с интегральным условием. Способы доказывания теоремы о существовании единственного обобщенного решения. Отличительные черты задач с нелокальными интегральными условиями.
статья, добавлен 31.05.2013Изучение единственного решения для смешанных краевых задач с заданными начальными условиями. Ознакомление с обозначениями сеточной функции по переменной. Анализ геометрического места узлов функции в разностном уравнении с фиксированными алгоритмами.
презентация, добавлен 30.10.2013