Аналитическая геометрия на плоскости: прямая линия, кривые второго порядка

Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

Подобные документы

  • Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.

    контрольная работа, добавлен 15.11.2013

  • Понятие и классификация поверхности второго порядка. Исследование ее формы. Инварианты уравнения поверхности 2-го порядка относительно преобразований декартовой системы координат. Представление об эллипсоиде. Каноническая форма уравнения эллипсоида.

    реферат, добавлен 16.10.2011

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Кривые и поверхности 2 порядка. Понятие канонических эллипсов, гиперболы, параболы и расчет их эксцентриситета. Кривые, заданные параметрическими уравнениями. Определение полярной системы координат и положение кривых в полярной системе координат.

    методичка, добавлен 12.12.2014

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.

    учебное пособие, добавлен 06.02.2011

  • Плоская алгебраическая кривая и радиус-вектор прямой на некоей постоянной величине. Уравнения декартовых координат, трисекция угла с помощью конхоиды. Циклоидальные кривые, их разновидности и Архимедова спираль, однородная и нерастяжимая тяжелая нить.

    реферат, добавлен 23.02.2012

  • Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.

    статья, добавлен 26.04.2019

  • Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.

    лекция, добавлен 29.09.2013

  • Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.

    лекция, добавлен 09.07.2015

  • Доказательства теоремы, характеризующей решетку из зон Бриллюэна, компьютерное построение, восстановление потерянных деталей. Квазипериодическое замощение плоскости, свойства: инфляция и дефляция, перенос и поворот. Физические приложения квазикристаллов.

    реферат, добавлен 05.02.2011

  • Построение линии пересечения двух плоскостей. Алгоритм для определения точки пересечения прямой с плоскостью общего положения. Решение с помощью фронтально-проецирующей плоскости. Построение линии пересечения двух треугольников и определение видимости.

    презентация, добавлен 29.10.2013

  • Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.

    книга, добавлен 25.11.2013

  • Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.

    презентация, добавлен 02.03.2014

  • Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.

    статья, добавлен 01.02.2019

  • Основные инвариантные свойства параллельного проектирования: проекция точки есть точка; проекция прямой на плоскость есть прямая; проекции взаимно параллельных прямых также взаимно параллельны. Изображение на плоскости треугольника, квадрата, ромба.

    презентация, добавлен 09.01.2014

  • Понятие параллельного переноса на вектор (сдвиг всей плоскости в направлении данного вектора на его длину). Характеристика параллельного переноса различных фигур. Понятие параллельного переноса в пространстве, его основные свойства (движение и пр.).

    презентация, добавлен 05.12.2014

  • Доказательство Фалесом равенства углов при основании равнобедренного треугольника. Развитие теории движений, определение равенства фигур. Виды движений: параллельный перенос, поворот вокруг точки и др. Аналитическое выражение движения на плоскости.

    реферат, добавлен 04.05.2016

  • Методика и основные этапы решения матричных уравнений, порядок проведения проверки. Составление уравнения прямой и каждой из сторон треугольника. Вычисление расстояния между двумя точками. Нахождение собственных чисел и собственных векторов матрицы.

    контрольная работа, добавлен 10.05.2012

  • Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.

    контрольная работа, добавлен 04.09.2013

  • Основные правила определения дифференциального оператора Лапласа. Механический смысл вектора ротора. Сущность поверхностного интеграла II-го рода. Характеристика главных способов вычисления потока. Построение уравнения плоскости треугольника, его расчет.

    лекция, добавлен 17.01.2014

  • Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.

    методичка, добавлен 27.04.2016

  • Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.

    учебное пособие, добавлен 31.03.2015

  • Понятие инверсии как сложного преобразования геометрических фигур, ее координатные формулы. Построение образа точки, прямой и окружности при инверсии. Свойства углов и расстояний при инверсии. Применение инверсии при решении задач на построение.

    курсовая работа, добавлен 05.10.2017

  • Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.

    лекция, добавлен 23.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.