Теория многочленов
Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.
Подобные документы
Развитие математики в Древнем Египте в период с III века до н.э. Проведение умножения египтянами с помощью сочетания удвоений и сложений. Использование иероглифов для изображения знаков сложения или вычитания. Древнеегипетская нумерация (запись чисел).
реферат, добавлен 17.04.2017Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.
учебное пособие, добавлен 05.03.2010- 53. Теория пределов
Геометрический смысл модуля числа - расстояния от начала отсчёта до точки, которой соответствует это число на координатной прямой. Бесконечно малая функция и ее свойства. Основные теоремы о пределах, их единственность, арифметические операции над ними.
реферат, добавлен 29.11.2016 - 54. Теория чисел
Отношение делимости в кольце целых чисел, их свойства. Алгоритм Евклида как метод нахождения НОД(a,b), основанный на 2х леммах. Взаимно простые числа. Наименьшее общее кратное. Основная теорема арифметики. Непозиционные и позиционные системы счисления.
реферат, добавлен 13.01.2014 Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
курсовая работа, добавлен 07.06.2014Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
презентация, добавлен 21.09.2017Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Алгоритмы умножения, их отличительные особенности, этапы и функции. Умножение беззнаковых чисел, младшими разрядами вперед, со сдвигом суммы ЧП вправо, а также старшими со сдвигом влево. Пути умножения знаковых чисел в прямых и дополнительных кодах.
реферат, добавлен 12.11.2011История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.
статья, добавлен 28.03.2019Описание алгебраических и тригонометрических многочленов на некотором интервале. Формулирование для них теоремы Чебышева об аппроксимации функций. Рассмотрение произвольной, непрерывной на [a,b] вещественной функции и обобщенной теоремы Валле-Пуссена.
реферат, добавлен 06.05.2014Теория делимости, основанная на единственности разложения натурального числа на простые множители (основная теорема арифметики). Доказательство Э. Уайлсом гипотезы Шимуры-Таниямы. Главные особенности применения матриц и теории групп, результаты.
статья, добавлен 03.03.2018Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.
контрольная работа, добавлен 29.11.2015Виды матриц. Их сложение и умножение на число. Формула произведения согласованных матриц. Свойства линейных операций. Транспонирование математических таблиц. Характеристика определителей и их вычисление. Понятие минора и алгебраического дополнения.
презентация, добавлен 29.08.2015Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.
контрольная работа, добавлен 24.01.2012Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.
лабораторная работа, добавлен 09.12.2019Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.
контрольная работа, добавлен 16.06.2010Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.
контрольная работа, добавлен 13.05.2014Многочлен или полином: алгебраическая сумма одночленов. Операции над многочленами, их кольцо над областью целостности. Схема Горнера и теорема Безу. Вычисление наибольшего общего делителя. Наименьшее общее кратное. Сравнения многочленов по многочлену.
реферат, добавлен 06.03.2010- 70. Понятие матриц
Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.
курсовая работа, добавлен 03.12.2013 Определение многочленов Чебышева, их краткая характеристика и особенности. Рассмотрение случая произвольного отрезка. Описание дифференциального уравнения многочленов и квадратурной формулы, сравнение их погрешностей. Общее понятие термина алгоритм.
курсовая работа, добавлен 14.04.2014Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.
презентация, добавлен 27.09.2017Симметрия геометрических фигур и группы движений плоскости. Умножение движений, имеющих общую неподвижную точку. Симметрия многочленов от двух переменных. Квадратурные формулы для окружности. Многочлены, обладающие симметрией правильных многогранников.
методичка, добавлен 13.01.2014Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.
реферат, добавлен 26.06.2013Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011