Преобразование Лапласа

Функция-оригинал, свойство линейности. Дифференцирование и интегрирование оригинала. Смещение в аргументе изображения и в аргументе оригинала (запаздывание). Изображение периодического оригинала. Свёртка функций, теорема умножения, интеграл Дюамеля.

Подобные документы

  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа, добавлен 20.01.2013

  • Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.

    учебное пособие, добавлен 05.04.2011

  • Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.

    лекция, добавлен 29.09.2014

  • Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.

    учебное пособие, добавлен 31.03.2016

  • Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.

    контрольная работа, добавлен 06.11.2012

  • Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.

    лекция, добавлен 17.01.2014

  • Геометрический смысл производной. Определение значения производной для функции и отложение их на оси. Графическое дифференцирование. Признаки существования локальных экстремумов и точек перегиба. Графическая иллюстрация. Недифференцируемая точка функции.

    контрольная работа, добавлен 27.08.2011

  • Понятие первообразной, правила нахождения. Определенный интеграл и его свойства. Площадь криволинейной трапеции. Основное свойство первоообразных. Постоянный множитель, стоящий перед функцией. Интеграл как основное понятие математического анализа.

    презентация, добавлен 16.09.2016

  • Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.

    презентация, добавлен 10.01.2017

  • Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.

    лекция, добавлен 03.05.2016

  • Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.

    презентация, добавлен 18.09.2013

  • Математическое моделирование распространения света. Унитарное преобразование Гамильтониана. Дифференцирование по параметру деформации. Уравнение нулевой кривизны. Интегрирование с помощью эпсилон-динамики. Первые члены асимптотических разложений.

    дипломная работа, добавлен 15.12.2015

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Исследование сходимости ряда членов бесконечной геометрической прогрессии. Гармонический ряд, доказательство расходимости. Теоремы о непрерывности суммы, почленном интегрировании и дифференцировании функциональных рядов. Криволинейный интеграл 1-го рода.

    лекция, добавлен 19.01.2014

  • Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.

    курсовая работа, добавлен 10.11.2010

  • Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.

    презентация, добавлен 26.09.2017

  • Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.

    презентация, добавлен 26.09.2017

  • Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.

    презентация, добавлен 17.12.2014

  • Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.

    курсовая работа, добавлен 23.04.2011

  • Определение бета- и гамма-функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов по формуле Стерлинга. Рассмотрение неполных гамма-функций (функции Прима). Примеры вычислений интегралов.

    курсовая работа, добавлен 01.11.2010

  • Сферические координаты точки в пространстве. Криволинейный интеграл по длине дуги. Формулы связи между декартовыми и сферическими данными. Оценка функций пространственной кривой. Изучение метода параметризации дуги. Криволинейный интеграл по координатам.

    лекция, добавлен 17.01.2014

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

  • Способы построения аналитических функций, конформно отображающих одну заданную область на другую. Описание практических приемов нахождения отображающих функций помощи интеграла Кристоффеля-Шварца. Характеристика теории функций комплексного переменного.

    учебное пособие, добавлен 14.05.2013

  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций, добавлен 10.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.