Вычисление потока и циркуляции векторного поля

Вычисление потока векторного поля через полную поверхность пирамиды в направлении нормали. Вычисление циркуляции векторного поля по замкнутому контуру путем применения теоремы Стокса к контуру и ограниченной им поверхности. Теорема Остроградского.

Подобные документы

  • Вычисление основных выборочных характеристик. Анализ несмещенной выборочной оценки для среднего квадратического отклонения. Коэффициент вариации. Ранжирование выборочных данных. Вычисление интервальных оценок для математического ожидания и дисперсии.

    курсовая работа, добавлен 21.01.2012

  • Построение полной системы инвариантов в задаче об аналитической классификации вырожденных элементарных особых точек на комплексной плоскости. Доказательство теоремы об основной секторальной нормализации седло-узловых особых точек векторного поля.

    автореферат, добавлен 21.02.2013

  • Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.

    контрольная работа, добавлен 19.01.2014

  • Застосування та обчислення криволінійних інтегралів першого роду. Умова незалежності криволінійного інтегралу від шляху інтегрування. Визначення довжини дуги кривої, маси кривої та координат центру мас. Особливості роботи силового векторного поля.

    курсовая работа, добавлен 12.05.2016

  • Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.

    лекция, добавлен 18.10.2013

  • Анализ возникновения измерения площадей земельных участков в Древнем Вавилоне и Египте. Открытие теоремы об объемах пирамиды и конуса Демокритом. Характеристика аксиоматического метода Евклида. Особенность векторного обоснования евклидовой геометрии.

    реферат, добавлен 04.05.2015

  • Фазовые пространства. Векторные поля на прямой. Методы решения линейных уравнений. Действие диффеоморфизмов на векторные поля и на поля направлений. Теоремы о выпрямлении. Консервативная система с одной степенью свободы. Свойства, определитель экспоненты.

    учебное пособие, добавлен 24.09.2012

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.

    лекция, добавлен 17.01.2014

  • Вычисление задач несовмещенных оценок среднего значения. Поиск доверительного инетрвала для среднего значения дисперсии из стандартного отклонения. Вычисление несмещенных оценок. Решение задачь путем вычисления минимальной выборки.

    задача, добавлен 23.10.2008

  • Разработка и реализация математической модели температурного поля в осушаемом массиве польдерных систем (ПС). Постановка граничных условий и вычисление коэффициента теплопроводности. Приведение рабочих результатов численных расчетов и их интерпретация.

    статья, добавлен 23.06.2018

  • Узагальнення перетворення Дуба на випадок гауссівських полів теореми Парка і Параньяпа. Дослідження ймовірностей, пов'язаних зі звуженням поля Ченцова на поверхні. Оцінки "хвоста" розподілу максимуму поля Ченцова на ламаній з однією точкою злому.

    автореферат, добавлен 27.07.2015

  • Теория поля. Элементы дифференциальной геометрии. Направление касательной в каждой точке кривой. Площадь гладкой поверхности. Предел интегральной суммы, полученной путем разбиения поверхности на малые участки и проектирования их на касательные плоскости.

    лекция, добавлен 18.10.2013

  • Понятие кратных (двойных и тройных) интегралов, криволинейных и поверхностных. Основные определения и формулировки и базовые теоремы Грина, Стокса и Гаусса-Остроградского. Специфика их применения к решению соответствующих задач геометрии и механики.

    учебное пособие, добавлен 22.10.2014

  • Основные теоремы о математическом ожидании, числовых характеристиках случайных величин. Вычисление корреляционного момента. Теоремы о дисперсии случайной величины. Теорема о линейной зависимости случайных величин. Определение коэффициента корреляции.

    лекция, добавлен 18.03.2014

  • Определение длины ребер и угла меду ними при заданных координатах вершины пирамиды. Вычисление пределов, без использования правила Лопиталя. Вычисление производных заданных функций, а также порядок построения графика. Расчет неопределенных интегралов.

    контрольная работа, добавлен 15.05.2014

  • Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.

    задача, добавлен 09.06.2014

  • Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.

    контрольная работа, добавлен 06.11.2012

  • Вычисление вероятности с помощью теоремы Пуассона, функции распределения и неравенства Маркова. Нахождение математического ожидания и дисперсии, коэффициента корреляции, среднего квадратического отклонения и функции распределения случайной величины.

    контрольная работа, добавлен 27.04.2015

  • Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.

    контрольная работа, добавлен 20.12.2013

  • Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.

    контрольная работа, добавлен 27.11.2013

  • Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.

    контрольная работа, добавлен 20.02.2012

  • Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.

    контрольная работа, добавлен 07.11.2018

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    контрольная работа, добавлен 05.05.2013

  • Решение математических задач. Нахождение пиков функции. Вычисление пределов, определенных и неопределенных интегралов; площади фигуры, ограниченной кривыми. Исследование функций дифференциальными методами. Уравнение касательной и нормали к кривой.

    контрольная работа, добавлен 10.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.