Экстремумы функций многих переменных
Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
Подобные документы
Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
курсовая работа, добавлен 08.09.2010Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.
дипломная работа, добавлен 16.01.2014Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.
презентация, добавлен 07.07.2015- 7. Экстремумы
Классические методы поиска экстремума функции одной переменной. Определение глобального максимума или минимума функции одной переменной. Выпуклые и вогнутые функции. Методы исключения интервалов. Поиск экстремумов функции нескольких переменных.
курсовая работа, добавлен 21.08.2008 Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
презентация, добавлен 21.08.2015Методологические принципы и алгоритмы оптимизации в ракурсе инженерного подхода. Модели задач оптимизации. Методы классического математического анализа исследования функций. Экстремумы функции одной и многих переменных. Метод множителей Лагранжа.
контрольная работа, добавлен 20.01.2015Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Безусловный и условный экстремумы в задаче Лагранжа. Применение неопределенных множителей Лагранжа сводит задачу оптимизации с ограничениями к задаче.
курсовая работа, добавлен 20.01.2009Понятие производной, ее геометрический, физический смысл. Производные высших порядков, изучение функции с помощью производной. Достаточные условия экстремума функции: нахождение экстремума, точка перегиба графика функции. Применение производной в алгебре.
реферат, добавлен 10.05.2009- 12. Производная
Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.
реферат, добавлен 26.06.2013 Разработка и обоснование новых и эффективных методов глобальной минимизации некоторых специальных классов негладких функций на выпуклых множествах. Разработка метода нахождения минимума негладкой выпуклой функции многих переменных на симплексе.
автореферат, добавлен 30.06.2018Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
контрольная работа, добавлен 13.10.2017Проблема нахождения необходимых и достаточных условий в свойствах геометрических фигур, которая является актуальной в работе учителя математики. Методические рекомендации для преподавания темы "Необходимые и достаточные условия" из курса "Геометрия".
статья, добавлен 27.02.2019Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.
статья, добавлен 05.12.2018Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
доклад, добавлен 23.04.2013Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Определение критериев выпуклости и вогнутости функций. Задачи безусловной оптимизации и необходимые условия оптимальности. Рассмотрение задачи с ограничениями-неравенствами. Рассмотрение сущности множителей Лагранжа и условий дополняющей нежесткости.
лекция, добавлен 06.09.2017Ограниченные и неограниченные множества. Точки верхней и нижней грани. Геометрический смысл предела числовой последовательности. Необходимые и достаточные условия сходимости чисел. Арифметические действия над последовательностями, имеющими предел.
лекция, добавлен 26.01.2014Необходимые, достаточные условия минимума дифференцируемой функции. Исследование специфических особенностей графического метода решения задач линейной оптимизации. Методика определения оптимального опорного плана при некотором фиксированном значении.
методичка, добавлен 26.11.2015Сущность основного условия для достижения функцией локального максимума в точке. Исследование достаточных критериев локального экстремума. Применение формулы Тейлора для доказательства теоремы о существовании минимума функции в стационарной точке.
доклад, добавлен 20.05.2014Использование компьютера на уроках математики. Введение понятия производная ее геометрический смысл, касательная к графику непрерывной функции. Правило Лопиталя, алгоритм применения производной для нахождения интервалов монотонности и экстремумов.
контрольная работа, добавлен 20.02.2020Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.
курс лекций, добавлен 23.10.2013