Развитие прецизионных и инженерных методов и программ расчета ядерных реакторов с использованием алгоритмов Монте-Карло
Разработка комплекса программ для обоснования безопасной работы ядерного реактора. Расчет пространственно-энергетического распределения нейтронов в элементах активной зоны. Решение кинетических уравнений с применением прецизионных алгоритмов Монте-Карло.
Подобные документы
Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.
статья, добавлен 15.01.2019Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.
доклад, добавлен 25.11.2010Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.
курсовая работа, добавлен 28.04.2012Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
статья, добавлен 22.05.2017Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.
курсовая работа, добавлен 06.03.2010Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.
статья, добавлен 13.12.2013История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Исследование машинных систем методом имитационного моделирования (метод Монте-Карло), простые и экономные способы формирования последовательности случайных чисел. Характеристика области применения метода Монте-Карло, его достоинства и недостатки.
реферат, добавлен 18.03.2014Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.
лекция, добавлен 18.07.2013Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.
статья, добавлен 04.03.2012Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.
доклад, добавлен 21.03.2015Характеристика теории вероятности как неслучайного явления в науке: история её возникновения (Паскаль, Ферма, Гюйгенс); возможности; определения и основные понятия; метод "Монте-Карло"; предпосылки развития технологий, кибернетики, искусственного разума.
реферат, добавлен 11.03.2014Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.
практическая работа, добавлен 26.12.2016Для заданной выборки равномерного распределения построение ее вариационного ряда, эмпирической функции, гистограммы и полигона частот. Расчет выборочного среднего, дисперсии, моды и медианы. Оценка методом Монте-Карло интеграла с заданной ошибкой.
контрольная работа, добавлен 10.11.2017Разработка подхода к ускоренному численному решению динамических задач большой размерности. Характеристика методов обоснования и тестирования вычислительных алгоритмов расчета декомпозированной задачи с применением современных компьютерных технологий.
автореферат, добавлен 25.07.2018Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.
практическая работа, добавлен 02.06.2017Планируемый ЛП-поиск как алгоритм, объединяющий стохастические модели, свойственные методу Монте-Карло и планирование вычислительного эксперимента. Методика проведения однофакторного дисперсионного анализа по всем параметрам для каждого критерия.
статья, добавлен 25.08.2020Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
курсовая работа, добавлен 06.04.2014Разработка программно-алгоритмической поддержки символьных преобразований и вычислений на основе средств компьютерной алгебры с представлением решений. Апробация программ на известных задачах и применение их для символьно-численного интегрирования.
автореферат, добавлен 27.03.2018Объективные и субъективные методы определения вероятности. Теория использования математической статистики, Байесовских сетей для вычисления вероятности событий. Методы экспертного анализа риска, частичного баланса, имитационные, моделирования Монте-Карло.
статья, добавлен 24.05.2018