Общая неэффективность использования суммарного градиента выборки при обучении нейронной сети
Процесс обучения нейросети-классификатора, сравнения эффективности теоретических методов оптимизации со стохастическими. Подтверждение преимуществ и потенциальных возможностей. Основные свойства задач (баз данных) и размеры нейронных сетей для них.
Подобные документы
Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.
статья, добавлен 12.06.2018Проектирование архитектуры программного комплекса на основе нейросетевых технологий для распознавания жестового языка инвалидов с нарушением слуха. Machine Learning: регрессионный методы интеллектуального анализа данных. Тестирование нейронной сети.
статья, добавлен 27.02.2019Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017Изучение общих принципов, стандартов и целей создания компьютерных сетей, их возможностей и преимуществ. Рассмотрение их типов, видов и способов передачи данных по локальным сетям, а также методов доступа к сети. Описание технологий Ethernet и Token Ring.
реферат, добавлен 25.12.2015Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Понятия, определения нейронных сетей и классификации изображений. Методы оптимизации работы нейронной сети. Описание интерфейса программной реализации решения задачи классификации изображений. Решение задачи распознания изображений реальных объектов базы.
дипломная работа, добавлен 06.06.2015Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015- 110. Искусственные сети
Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012 Метод синтеза полиномиальных нейронных сетей для решения задач прогнозирования нестационарных временных рядов. Характеристика метода с точки зрения численной реализации, усложнения архитектуры нейронной сети и пересчета настроенных синаптических весов.
автореферат, добавлен 30.01.2016Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Создание шаблона, который позволит студенту приобрести необходимые знания для создания, обучения и стимуляции нейронной сети. Проектирование приложения по визуализации образов букв русского алфавита. Шаблоны букв, созданные в графическом редакторе.
статья, добавлен 19.12.2017Получение гибридной системы посредством применения технологий экспертных систем и искусственных нейронных сетей. Описание базы данных экспертной системы экологической безопасности гидросферы, создаваемой на основе предыдущих протестированных баз данных.
статья, добавлен 30.04.2018Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.
реферат, добавлен 17.05.2013Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Анализ системы управления подсистемами технического обеспечения интеллектуального здания. Особенность применения нейронных сетей. Сравнение методов случайных лесов, наивного байесовского классификатора и градиентного бустинга для задач прогнозирования.
диссертация, добавлен 04.12.2019- 123. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Особенность развития компьютерных сетей на современном этапе развития ИКТ. Специфика образовательных возможностей компьютерной сети. Электронная почта, плюсы и минусы использования сети. Характеристика использования глобальной сети Интернет в образовании.
контрольная работа, добавлен 10.06.2015