Математические основы теории автоматического управления
Решение дробно-рациональных и импульсных функции. Преобразование Фурье и Лапласа. Операторный метод решения дифференциальных уравнений. Понятие линейного динамического звена и его временные характеристики. Частотные характеристики динамического звена.
Подобные документы
Запись дифференциальных уравнений в стандартной и операторной форме. Особенности передаточной и частотной функции звена, его временные и частотные характеристики. Специфика позиционных и интегрирующих звеньев. Их уравнения и расчет коэффициентов.
курсовая работа, добавлен 22.04.2011Основные понятия в теории решения дробно-рациональных уравнений. Понятия "параметр" и "уравнение с параметром". Применение аналитического, графического метода и метода замены решения задач к решению дробно-рациональных уравнений, содержащих параметр.
курсовая работа, добавлен 29.05.2018Математическое моделирование реального объекта в виде дифференциального уравнения линейного инерционного звена и передаточной функции. Операторно-структурное описание сигнала. Построение переходной характеристики устойчивого звена первого порядка.
реферат, добавлен 13.01.2014Прямое и обратное преобразование Лапласа. Теорема об изображении периодических оригиналов и о дифференцировании оригиналов. Поиск изображения функции, заданной формулой и графически. Примеры решения дифференциальных уравнений операционным методом.
реферат, добавлен 22.10.2015Связь нелокальных задач с нагруженными уравнениями. Понятие управления решения дифференциальных (нагруженных) уравнений со скоростью. Рассмотрение скорости изменения величин как характеристики исследования процессов. Вычисление исправленной производной.
статья, добавлен 20.05.2018Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Основные понятия интегральных уравнений. Понятие интегральных преобразований и их таблица, преобразование Фурье, Лапласа и Меллина и их применение к решению интегральных уравнений. Преобразование Фурье и её применение к решению некоторых интегральных урав
дипломная работа, добавлен 29.04.2024Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Применение моделей динамического программирования при разработке правил управления запасами и распределения инвестиций. Сетевая модель и метод прямой прогонки. Решение задач динамического программирования при помощи принципа оптимальности Беллмана.
контрольная работа, добавлен 18.04.2014Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
презентация, добавлен 26.09.2017Переменная преобразования Лапласа. Оригиналы и изображения непрерывных сигналов по Лапласу. Реакция системы после почленного перехода от оригиналов к изображениям при нулевых начальных условиях. Определение передаточной функции инерционного звена.
лекция, добавлен 01.02.2013Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.
курсовая работа, добавлен 27.03.2011Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
лекция, добавлен 23.07.2015- 18. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Определение передаточной функции в операторной форме в форме изображений Лапласа. Рассмотрение физического смысла частотной передаточной функции. Преимущество использования логарифмических частотных характеристик по сравнению с обычными характеристиками.
реферат, добавлен 26.08.2017Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.
лекция, добавлен 06.04.2014Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Решение дифференциальных уравнений с разветвляющимися переменными. Определение и решение однородных дифференциальных уравнений и уравнений в полных дифференциалах. Решение линейных дифференциальных уравнений первого порядка и уравнений Бернулли.
лекция, добавлен 14.03.2014Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016