Определение матриц. Действие над матрицами и векторами
Понятие, основные виды (скалярная, единичная, нулевая, транспонированная) и равенство матриц как множества чисел, образующих прямоугольную таблицу, определение вектора. Характеристика операций над матрицами в линейной алгебре. Свойства умножения матриц.
Подобные документы
Формульное выражение метода вычитания и умножения матриц на число. Возведение математического объекта в степень. Транспортирование единичных детерминант на число. Нахождение множественных характеристик квадратной матрицы второго и третьего порядков.
презентация, добавлен 15.03.2014Деление чисел с использованием теоремы о делении с остатком. Представление геометрической интерпретации комплексных чисел, определение их модулей. Применение диафантова анализа. Вычисление матриц и пределов. Нахождение производных заданных функций.
контрольная работа, добавлен 21.01.2015Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.
реферат, добавлен 20.02.2012Примеры различных операций и вычислений с векторами и матрицами в линейной алгебре. Теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования. Алгоритм оценки величины и нахождения собственных значений. Отношение Рэлея.
реферат, добавлен 26.01.2012Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
шпаргалка, добавлен 23.01.2011- 34. Матрицы Адамара
Характеристика матриц Адамара и некоторые их обобщения. Процесс вычисления наибольшего возможного числа положительных слагаемых при раскрытии определителя. Определение основных методов построения вещественных матриц Адамара, их специфика и применение.
статья, добавлен 26.05.2017 Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.
контрольная работа, добавлен 02.12.2013Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.
реферат, добавлен 30.10.2010Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.
презентация, добавлен 23.12.2013Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.
контрольная работа, добавлен 14.04.2011Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.
лекция, добавлен 24.11.2015Ортогональное вращение Гивенса и преобразование Хаусхолдера. Последовательность нахождения сингулярного разложения матриц. Описание числа обусловленности. Нормы в пространстве векторов и матриц. Использование разложения в методе наименьших квадратов.
дипломная работа, добавлен 26.02.2020Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.
контрольная работа, добавлен 27.03.2012- 43. Матрица
Элементы и обозначение матриц. Свойства операции произведения матриц. Получение присоединенной матрицы путем замены каждого элемента матрицы на его алгебраическое дополнение. Использование метода обратной матрицы для решения систем линейных уравнений.
презентация, добавлен 14.11.2014 - 44. Матричный анализ
Алгоритм определения функции от матриц, их значения на спектре, свойства и доказательства. Построение интерполяционного многочлена Ланганжа-Сильвестра. Теорема Фробениуса-Перона. Анализ эрмитовых и квадратичных матриц. Спектральное разложение функции.
реферат, добавлен 30.10.2010 Алгоритм моделирования расширенных цепей Маркова полиномиальными функциями над полем GF(2n). Статистический анализ цепей Маркова по критерию линейной сложности последовательностей. Разработка метода представления неразложимых стохастических матриц.
автореферат, добавлен 28.03.2018Сущность понятий скалярной и векторной математических величин. Основные свойства операций с векторами. Разложение векторов по ортам. Определение проекции вектора и их свойства. Действия с векторами в координатной форме при условие коллинеарности.
презентация, добавлен 03.10.2012Определение матрицы и арифметические операции над матрицами. Матричное представление линейных уравнений. Используемые инструменты MathCAD для вычислений с матрицами. Формирование уравнений цепи на основе теории графов. Топологические матрицы графа.
курсовая работа, добавлен 28.04.2015Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Анализ вопросов, связанных с приведением бесконечных матриц с суммируемыми диагоналями к диагональному или блочно-диагональному виду с помощью преобразования подобия. Характеристика условий, при которых это возможно. Оценка собственных значений матрицы.
статья, добавлен 01.02.2019- 50. Алгебра матриц
Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.
реферат, добавлен 07.04.2015