Элементы высшей математики

Понятие и виды матриц, их применение в математике. Алгебраические операции, выполняемые с матрицами. Системы линейных уравнений. Условие разрешимости системы линейных уравнений на языке матриц. Примеры элементарных преобразований матриц, ранг матрицы.

Подобные документы

  • Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.

    контрольная работа, добавлен 21.11.2012

  • Примеры решения математических заданий на нахождение матрицы, производной методом дифференциального исчисления, вычисление определителя четвертого порядка, системы линейных алгебраических уравнений методом Крамера и средствами матричного исчисления.

    контрольная работа, добавлен 16.04.2014

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.

    контрольная работа, добавлен 12.03.2020

  • Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.

    лекция, добавлен 18.04.2014

  • Виды матриц, используемых в математике для компактной записи систем алгебраических или дифференциальных уравнений. История происхождения и свойства магического квадрата. Применение массивов в технике и программировании. Прогрессивные матрицы Равена.

    реферат, добавлен 21.03.2022

  • Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.

    курс лекций, добавлен 06.11.2009

  • Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.

    лекция, добавлен 23.08.2016

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.

    курс лекций, добавлен 23.09.2012

  • Теоретические основы эвклидовости в математике. Кольца целостности. Евклидовы кольца. Матрицы над евклидовым кольцом. Линейные уравнения и системы линейных уравнений над кольцом целостности. Системы линейных уравнений над произвольным евклидовым кольцом.

    курсовая работа, добавлен 22.03.2016

  • Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.

    контрольная работа, добавлен 22.08.2014

  • Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.

    контрольная работа, добавлен 04.09.2013

  • Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.

    лекция, добавлен 26.01.2014

  • Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.

    задача, добавлен 31.07.2011

  • Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.

    методичка, добавлен 19.09.2015

  • Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.

    реферат, добавлен 07.04.2015

  • Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.

    контрольная работа, добавлен 31.01.2014

  • Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.

    лекция, добавлен 26.03.2012

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Сведения об умножении матриц, характеристика его свойств. Умножение матриц произвольного формата, их разбиение. Ассоциативность умножения матриц произвольного формата. Матрицы как линейные операторы. Построение матрицы по заданной формуле отображения.

    курсовая работа, добавлен 02.03.2019

  • Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.

    курсовая работа, добавлен 28.06.2012

  • Определение понятия "ранг матрицы". Сущность элементарных преобразований матрицы. Алгоритм нахождения ранга матрицы. Характеристика процесса транспонирования матрицы. Способы и примеры вычисления ранга матрицы с помощью элементарных преобразований.

    презентация, добавлен 28.09.2015

  • Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.

    учебное пособие, добавлен 02.02.2012

  • Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.

    лекция, добавлен 09.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.