Теория геометрических построений

Геометрические построения, историческая справка. Построения с помощью циркуля и линейки. Общие аксиомы конструктивной геометрии. Геометрические построения одной линейкой. Аксиомы математических инструментов. Окружность и ее центр (построение Штейнера).

Подобные документы

  • Содержание аксиоматического метода построения научной теории: выделение основных понятий, формулировка аксиомы, вывод логическим путём теоремы и других определений. Разрыв между геометрией и арифметикой Евклида. Аксиома параллельности Лобачевского.

    реферат, добавлен 30.10.2010

  • Краткое жизнеописание и некоторые научные достижения выдающегося швейцарского математика XIX века Якоба Штейнера. Проведение исследования планиметрических задач на построение. Основная характеристика теоремы о цепочке взаимно касающихся окружностей.

    статья, добавлен 26.04.2019

  • Изучение некоторых методов решения геометрических задач на местности и освоение приемов компьютерного конструирования и возможностей редакторов. Деление отрезков, высоты и углов. Практическое применение: составление карт, разметка участков местности.

    реферат, добавлен 27.08.2010

  • Линейно-конструктивный рисунок группы геометрических тел. Объемно-пространственные построения в рисунке с натуры. Соединение горизонтального и фронтального видов линии горизонта. Технологическая последовательность объемно-пространственных построений.

    статья, добавлен 10.10.2021

  • Деление отрезка пополам на две равные части перпендикуляром, проведенным через точки пересечения дуг окружностей радиуса. Построение перпендикуляра к прямой из точки, находящейся вне ее. Деление угла пополам. Построение правильных многоугольников.

    лекция, добавлен 25.09.2017

  • Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.

    курсовая работа, добавлен 25.01.2017

  • Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.

    презентация, добавлен 29.04.2015

  • Особенности и способы построения перспективных проекций на плоскости. Исходные ортогональные проекции и необходимые построения. Построение перспективы второй окружности, расположенной в параллельной плоскости. Основы построения теней в перспективе.

    курсовая работа, добавлен 25.04.2017

  • Точка встречи как точка пересечения прямой и плоскости, закономерности ее построения. Общие правила построения линий взаимного пересечения геометрических тел. Пересечение прямой с поверхностями геометрических тел. Взаимное пересечение тел вращения.

    методичка, добавлен 07.12.2013

  • Правила решения задач на построение геометрических фигур в координатной плоскости с применением циркуля и линейки. Алгебраический метод получения отрезка. Формульные выражение для вычисления корней квадратного уравнения. Понятие однородных функций.

    контрольная работа, добавлен 25.01.2015

  • Сущность аксиомы как положения, принимаемого без логического доказательства в силу непосредственной убедительности. Аксиомы геометрии: история и ученые-разработчики. Общепринятый аксиоматический метод в математике и его понятие за пределами математики.

    доклад, добавлен 04.12.2008

  • Исследование особенностей математической индукции, одного из методов доказательства истинности некоего утверждения для всех натуральных чисел. Характеристика аксиомы Пеано, аксиомы существования минимума, доказательства аксиомы индукции как теоремы.

    статья, добавлен 25.01.2012

  • Правила оформления чертежа: форматы, масштабы, линии, шрифты и др. Графические обозначения материалов, нанесение размеров и геометрические построения. Деление отрезка на пропорциональные части, построение треугольника, кривых линий, двутавра, крюка и др.

    методичка, добавлен 11.12.2014

  • Геометрическая фигура как мысленный образ предмета, учитывающий только его форму и размер. История возникновения геометрии и искусства. Использование геометрических форм в различных видах искусства. Связь геометрии и искусства в городе Качканар.

    контрольная работа, добавлен 23.10.2023

  • Описание базовых геометрических фигур как основ архитектурных форм. Правильный круг и пирамида как исторические прототипы геометрических и архитектурных форм. Геометрические формы в проектах советских авангардистов. Комбинирование архитектурных форм.

    творческая работа, добавлен 03.05.2019

  • Задача о делении заданного угла на три равные части построением циркулем и линейкой. Особенности трисекции угла, способы её выполнения и ограничения. Варианты деление угла на нечётное количество равных углов. Построение правильного семиугольника.

    статья, добавлен 12.06.2016

  • Использование программного обеспечения для построения графиков при решении математических задач. Определение функции на заданном отрезке с помощью Мастера построения графиков. Особенности их форматирования. Определение положительного корня уравнения.

    контрольная работа, добавлен 07.10.2016

  • Общий подход к решению задач о делении угла на равные части с помощью циркуля и линейки. Рассмотрение деления угла на три равные части в качестве примера. Доказательство ошибочности утверждения о неразрешимости в отношении задачи о трисекции угла.

    статья, добавлен 24.05.2016

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.

    статья, добавлен 11.02.2021

  • Первые три аксиомы и взаимное расположение точек и прямых, расположение одной точки между двумя прямыми. Формулировка аксиомы, наложение, отрезок и прямые, луч и неразвернутый угол. Система аксиом планиметрии, завершающая аксиома параллельных прямых.

    презентация, добавлен 13.04.2012

  • История появления геометрии, происхождение термина. Познания в этой науке древних греков, развитие знаний в Вавилоне, Китае, Египте. Вклад в развитие геометрии Евклида. Основные понятия планиметрии. Построение и измерение углов, действия над ними.

    практическая работа, добавлен 29.01.2012

  • "Начала" Евклида как повод для создания новых теорий в области геометрии. Создание и разработка геометрии Лобачевского. Вопрос об исследовании всей структуры системы аксиом как евклидовой геометрии. "Лекции о новой геометрии" Паши и его аксиомы порядка.

    реферат, добавлен 30.10.2010

  • Сущность построения аксонометрических проекций. Прямоугольная, косоугольная аксонометрия. Общие сведения о многогранниках. Построение проекций многогранника, развертка. Сведения о кривых поверхностях. Построения проекций кривых поверхностей и развертки.

    реферат, добавлен 13.03.2014

  • Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.

    реферат, добавлен 11.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.