Методика изучения движения плоскости

Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.

Подобные документы

  • Преобразование линии, фигуры, плоскости. Определение и виды движения. Особые свойства переноса. Понятие центральной и осевой симметрии. Доказательство признаков равенства треугольников. Использование поворота отрезков при решении геометрических задач.

    реферат, добавлен 03.10.2019

  • Представление плоскости уравнением. Уравнение плоскости "в отрезках". Расстояние от точки до плоскости. Канонические и параметрические уравнения прямой. Расстояние между точками. Деление отрезка в данном отношении. Уравнение поверхности (гиперболоида).

    реферат, добавлен 27.01.2016

  • Симметрия геометрических фигур и группы движений плоскости. Умножение движений, имеющих общую неподвижную точку. Симметрия многочленов от двух переменных. Квадратурные формулы для окружности. Многочлены, обладающие симметрией правильных многогранников.

    методичка, добавлен 13.01.2014

  • Понятие симметрии и исследование примеров ее проявления в природе, классификация и типы: осевая, двусторонняя, центральная, относительно прямой и точки. Использование симметричных фигур в архитектуре, искусстве. Математическое значение данного явления.

    презентация, добавлен 26.01.2017

  • Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.

    лекция, добавлен 09.07.2015

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.

    курсовая работа, добавлен 21.05.2012

  • Общие аксиомы конструктивной геометрии. Инструменты геометрических построений. О возможности решения задач одним циркулем. Построение на плоскости одной линейкой. Элементарные задачи, этапы и методы их выполнения. Методические рекомендации по обучению.

    дипломная работа, добавлен 06.03.2014

  • Определение перпендикулярности прямых в пространстве, их расположение относительно друг друга. Определение прямой, перпендикулярной плоскости. Примеры и геометрические задачи, представляющие графическую интерпретацию прямой, перпендикулярной плоскости.

    презентация, добавлен 29.01.2015

  • Характеристика параллельных прямых на плоскости в курсе планиметрии. Теоремы как признаки параллельности прямых, а также роль их аксиомы. Параллельность прямых в пространстве и особенности скрещивающихся линий. Теорема о линиях и ее доказательство.

    реферат, добавлен 07.07.2014

  • Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.

    учебное пособие, добавлен 24.02.2014

  • Строение поверхности вблизи заданной точки. Взаимное расположение кривой и плоскости. Особенности проекции кривой на соприкасающуюся и спрямляющуюся плоскости. Уравнение огибающей семейства плоских кривых. Понятие ортогональной траектории касательной.

    лекция, добавлен 01.09.2017

  • Предназначение начертательной геометрии, характеристика центральных и параллельных проекций. Описание способов задания плоскости на эпюре. Определение расстояния от точки до плоскости. Взаимное пересечение тел, ограниченных поверхностями вращения.

    учебное пособие, добавлен 07.11.2015

  • Способы построения геометрических фигур с помощью циркуля и линейки. Схема решения задач с применением методов пересечения, подобия, методов инверсии, движения. Решение задачи построения фигур при помощи одной линейки, линейки и угольника, одного циркуля.

    курс лекций, добавлен 29.01.2013

  • Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Основные модели геометрических тел: пирамида, цилиндр, шар, конус, куб и параллелепипед. Сферы применения стереометрии. Некоторые следствия из аксиом.

    презентация, добавлен 13.04.2012

  • Основные инвариантные свойства параллельного проектирования: проекция точки есть точка; проекция прямой на плоскость есть прямая; проекции взаимно параллельных прямых также взаимно параллельны. Изображение на плоскости треугольника, квадрата, ромба.

    презентация, добавлен 09.01.2014

  • Описание методов проекций (центральные и параллельные проекции). Проецирование методом Монжа. Взаимное положение прямых в пространстве: пересекающиеся, параллельные и скрещенные прямые. Способы задания плоскости на чертеже. Прямая и точка в плоскости.

    курсовая работа, добавлен 15.12.2010

  • Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.

    учебное пособие, добавлен 14.03.2014

  • Получение изображения объектов пространства на плоскости методом проецирования. Центральное проецирование как общий случай проецирования геометрических объектов на плоскость. Проецирование на три плоскости проекций. Проекции точки, прямой и плоскости.

    лекция, добавлен 02.04.2019

  • Изучение гладких многообразий. Примеры замкнутых поверхностей. Теорема Эйлера о многогранниках. Определение проективной плоскости по Риману. След движения окружности по плоскости. Алгебраическая топология многообразий. Группы гомотопий и гомологий.

    книга, добавлен 25.11.2013

  • Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.

    курс лекций, добавлен 21.04.2015

  • Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.

    контрольная работа, добавлен 29.02.2020

  • Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.

    книга, добавлен 25.11.2013

  • Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.

    курсовая работа, добавлен 08.12.2015

  • Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.

    реферат, добавлен 16.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.