Теория поля. Теория функций комплексного переменного
Скалярное поле, производная по направлению, градиент функции. Оператор Гамильтона. Свойства векторного поля. Комплексные числа, формулы Эйлера. Производные и интеграл от функции комплексного переменного. Ряды Тейлора и Лорана. Вычеты и их использование.
Подобные документы
Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.
контрольная работа, добавлен 20.01.2013Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
курсовая работа, добавлен 07.06.2014Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.
реферат, добавлен 21.08.2017Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.
реферат, добавлен 04.05.2015Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.
презентация, добавлен 29.10.2017Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
шпаргалка, добавлен 02.03.2014Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.
реферат, добавлен 12.09.2012Характеристика аналитических функций комплексной переменной с малыми параметрами, порождаемыми некоторыми операторами. Исследование асимптотического поведения функции. Особенности решения задачи с использованием линии уровня гармонических функции.
статья, добавлен 14.08.2020Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011Дифференцируемость и полный дифференциал в точке. Главная линейная часть и её приращение. Геометрический смысл дифференциала функции нескольких переменных. Производные сложной и неявной функции. Производная в данном направлении и градиент функции.
лекция, добавлен 07.07.2015Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.
реферат, добавлен 13.12.2022Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.
реферат, добавлен 23.01.2022Дифференциальные уравнения и геометрическая интерпретация решения. Особенность системы линейных дифференциальных уравнений с постоянными коэффициентами. Возведение в степень и извлечение корня, понятие об интеграле функции комплексного переменного.
контрольная работа, добавлен 22.11.2014Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.
лекция, добавлен 18.05.2010Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.
курс лекций, добавлен 23.10.2013- 41. О функции Эйлера
Значение функции Эйлера в теории чисел и математике. Доказывание формулы Мертинга и изучение, на ее основе, точности аппроксимации среднего значения функции Эйлера соответствующим квадратичным полиномом. Понятие плотности значений функции Эйлера.
статья, добавлен 26.05.2017 Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015Способы построения аналитических функций, конформно отображающих одну заданную область на другую. Описание практических приемов нахождения отображающих функций помощи интеграла Кристоффеля-Шварца. Характеристика теории функций комплексного переменного.
учебное пособие, добавлен 14.05.2013Связанные векторы и свободные векторы. Скалярное произведение ковектора. Умножение на числа и сложение тензоров. Поднятие и опускание индексов. Тензорные поля в декартовых координатах. Градиент, дивергенция и ротор. Главная идея криволинейных координат.
учебное пособие, добавлен 25.11.2013Разработка нового способа для установления интегрируемости неограниченных разрывных функций. Теории первообразных функций. Восстановление функции по известной ее исправленной производной. Классическая теория интеграла Лебега. Дельта–функция Дирака.
статья, добавлен 20.05.2018Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.
реферат, добавлен 13.06.2015Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.
курсовая работа, добавлен 17.03.2014Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.
методичка, добавлен 27.09.2012Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.
контрольная работа, добавлен 22.12.2015Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.
шпаргалка, добавлен 12.01.2013