Сущность числа "пи"
История возникновения математической константы, выражающей отношение длины окружности к ее диаметру, ее значение для науки. Понятие геометрического и классического периода вычисления числа пи. Сущность формул Ф. Виета, Д. Валлиса, Д. Мэчина и Л. Эйлера.
Подобные документы
- 51. Дійсні числа
Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.
курсовая работа, добавлен 15.06.2016 - 52. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.
презентация, добавлен 19.09.2017История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.
курсовая работа, добавлен 22.04.2011- 55. Комплексні числа
Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.
реферат, добавлен 10.01.2009 Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.
статья, добавлен 22.01.2017Ознакомление с основными методами расширения числовых множеств от натуральных до комплексных, как способами построения нового математического аппарата. Рассмотрение особенностей решения уравнений с комплексной переменной. Изучение теоремы Виета.
контрольная работа, добавлен 20.11.2016Сущность конического сечения как геометрического места точек, удовлетворяющих уравнению второго порядка. Основные свойства эллипса, гиперболы, окружности. Определение первого члена, знаменателя геометрической прогрессии. Расчет биномиального коэффициента.
контрольная работа, добавлен 20.01.2014- 59. Комплексні числа
Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.
реферат, добавлен 07.10.2010 Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.
реферат, добавлен 22.01.2013Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.
реферат, добавлен 08.06.2010Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012- 63. Число е
Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 15.05.2011 Понятие многочлена в математике. Степень и корни многочлена. Свойства корней многочлена в теореме Виета. Доказательства теорем о свойствах симметрических многочленов. Использование теоремы Виета и теории симметрических многочленов для решения задач.
реферат, добавлен 12.11.2014Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.
курсовая работа, добавлен 26.09.2009Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.
курсовая работа, добавлен 22.04.2011Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.
реферат, добавлен 08.12.2017- 68. Теорема Виета
Биография Франсуа Виета и его труды по математике. Изучение зависимости между корнями и коэффициентами квадратного уравнения. Рассмотрение основных особенностей теоремы Виета. Различные рациональные преобразования корней в алгебраических уравнениях.
реферат, добавлен 11.04.2014 История возникновения тригонометрии как науки, особенности ее формирования. Анализ вклада члена Российской академии наук Л. Эйлера в развитие современной тригонометрии. Общая характеристика и методика решения тригонометрических уравнений и неравенств.
доклад, добавлен 06.05.2010Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.
статья, добавлен 03.03.2018Історія появи числа в геометрії, його ірраціональність та вираження дробом. Трансцендентність числа пі - математичної константи, що визначається у Евклідовій геометрії як відношення довжини кола до його діаметра або як площа круга одиничного радіуса.
реферат, добавлен 20.12.2016- 72. Теорема Виета
Краткая биография и первые научные достижения Франсуа Виета. Определение "формулы Виета" (зависимости между корнями и коэффициентами алгебраического уравнения). Доказательство теоремы и ее опровержение, а также практический пример использования.
презентация, добавлен 22.02.2014 Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014