Метод потенциалов
Описание разновидностей потенциалов, свойств потенциалов простого и двойного слоя. Постановка и решение краевых задач для уравнений Лапласа и Пуассона в пространстве, их сведение к интегральным уравнениям. Нахождение объемного потенциала однородного шара.
Подобные документы
Оценка разности спектральных функций для степени оператора Лапласа. Обратные задачи спектрального анализа и интерполяция. Восстановление потенциала в обратной задаче спектрального анализа для возмущенной степени оператора Лапласа в пространстве R2.
автореферат, добавлен 10.12.2013Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Характеристика решения первой краевой задачи конечно-разностным и методом прогонки. Их особенности, описание и специфика применения к конкретному случаю. Код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.
курсовая работа, добавлен 01.12.2009Апробирование методики для вычисления ангармонических сдвигов фундаментальных колебательных состояний в сложных молекулярных системах. Построение структурно-динамических моделей для базовых пятичленных циклических соединений и ряда их производных.
автореферат, добавлен 01.05.2018Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
контрольная работа, добавлен 22.08.2014Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.
реферат, добавлен 06.03.2010Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.
презентация, добавлен 07.05.2014Изучение алгоритмов аналитических решений краевых задач при движении фазовых границ с использованием нелинейного дифференциального уравнения Chini. Анализ модели переходных процессов фазисных превращений. Определение профиля температуры твердой фазы.
статья, добавлен 08.02.2017Численное решение системы дифференциальных уравнений. Решение задач интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом с использованием программы Matlab сведением в графики и таблицы.
курсовая работа, добавлен 10.03.2020Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.
курсовая работа, добавлен 26.07.2012Изучение личности Диофанта и принципов решения диофантовых уравнений. Рассмотрение системы чисел и символов, которые Диофант применял в своих трудах, примеров из сборника его задач, имеющих решение. Решение неопределенных уравнений в рациональных числах.
реферат, добавлен 26.03.2019Использование метода наименьших квадратов для отыскания приближенных зависимостей между изучаемыми экспериментальными величинами. Решение уравнений в матричном виде. Нахождение интервальных оценок неизвестных параметров и доверительного интервала.
курсовая работа, добавлен 05.05.2014Обосновывается алгоритм построения компромиссного набора стратегий для дифференциальной игры нескольких лиц. Рассматривается набор гладких потенциалов, представляющих собой непрерывно дифференцируемые функции текущего времени и фазовых координат.
статья, добавлен 26.04.2019Квадратное уравнение как математическая модель текстовой задачи. Последовательность решения игры "Дешифровщик". Нахождение расстояния между группами разведчиков, отправившихся одновременно из одного пункта по разным направлениям с разной скоростью.
презентация, добавлен 15.01.2017- 116. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Понятие и закономерности реализации численных факторов. Этапы решения задач на ЭВМ. Правила округления чисел. Приближенное решение нелинейных уравнений. Аналитический, геометрический метод отделения корней. Метод итерации. Достаточное условие сходимости.
курс лекций, добавлен 04.05.2011Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
курсовая работа, добавлен 10.02.2019- 119. Диофантовы уравнения
Теория делимости чисел как инструмент решения задач. Нахождение целочисленных решений алгебраических уравнений с тремя неизвестными (диофантовый анализ). Попытки найти решение нелинейного диофантова уравнения или доказать невозможность такого решения.
реферат, добавлен 28.06.2009 Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред.
автореферат, добавлен 02.03.2018Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.
презентация, добавлен 17.09.2013- 123. Метод Гаусса
Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.
доклад, добавлен 18.09.2013 Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Нахождение обратной матрицы. Решение квадратных систем линейных алгебраических уравнений матричным методом и по правилу Крамера. Метод Жордановых исключений. Собственные векторы и собственные значения. Приведение квадратичной формы к каноническому виду.
курс лекций, добавлен 11.04.2013