Диофантовы уравнения

Теория делимости чисел как инструмент решения задач. Нахождение целочисленных решений алгебраических уравнений с тремя неизвестными (диофантовый анализ). Попытки найти решение нелинейного диофантова уравнения или доказать невозможность такого решения.

Подобные документы

  • Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.

    контрольная работа, добавлен 26.12.2011

  • Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.

    лекция, добавлен 29.10.2013

  • Изучение осцилляционных свойств решений различных классов линейных, нелинейных, интегро-разностных и интегро-дифференциально-разностных уравнений с конечными разностями первого порядка. Осцилляция решений нелинейного дифференциально-разностного уравнения.

    статья, добавлен 15.05.2016

  • Изучение алгоритмов аналитических решений краевых задач при движении фазовых границ с использованием нелинейного дифференциального уравнения Chini. Анализ модели переходных процессов фазисных превращений. Определение профиля температуры твердой фазы.

    статья, добавлен 08.02.2017

  • Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).

    реферат, добавлен 01.11.2019

  • Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.

    лабораторная работа, добавлен 10.10.2015

  • Особенности решения уравнения с двумя неизвестными. Построение графика, определение координат. Количество решений двух линейных уравнений с двумя переменными. Отличительные черты способа подстановки и метода сложения. Расчет верного числового равенства.

    презентация, добавлен 22.11.2015

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.

    курс лекций, добавлен 19.09.2015

  • Доказательство существования регулярного решения уравнения синус-Гордона на всей плоскости. Аналитическое решение уравнения и сетевой угол чебышевской сети на псевдосфере. Геометрическая интерпретация решений уравнения, понятие асимптотической полосы.

    контрольная работа, добавлен 08.12.2013

  • Рассмотрение решения уравнений с двумя переменными, систем уравнений, методов решения систем, таких как метод подстановки, сложения, графический, метод введения новых переменных, определителей второго и третьего порядков и теоремы Кронекера-Капеллы.

    научная работа, добавлен 25.02.2014

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.

    статья, добавлен 03.03.2018

  • Использование свойств показательной и логарифмической функций для решения уравнений и неравенств. Практическое применение метода введения новых переменных, подстановки и некоторых специальных методов для решения уравнений, систем уравнений и неравенств.

    реферат, добавлен 12.12.2013

  • История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.

    презентация, добавлен 13.01.2017

  • Математическое и физическое определение фрактала. Дифференциальные уравнения дробного порядка и примеры решений задач Коши. Метод Шварца и исследование двухсеточных параллельных алгоритмов для решения дробно-дифференциальных уравнений аномальной диффузии.

    дипломная работа, добавлен 22.09.2014

  • Равносильные уравнения, их следствия. Методы решения уравнений, тождественные преобразования над выражениями, входящими в уравнение. Правила преобразования уравнений. Алгоритм метода интервалов, примеры решения. Числовые неравенства, основные свойства.

    реферат, добавлен 22.12.2011

  • Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.

    лекция, добавлен 06.04.2018

  • На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.

    статья, добавлен 11.07.2018

  • Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.

    контрольная работа, добавлен 24.12.2014

  • Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.

    контрольная работа, добавлен 25.04.2017

  • Понятие делимости чисел, изучение свойств делимости. Признаки делимости чисел, изучаемые и не изучаемые в школе. Овладение в совершенстве признаками делимости чисел, изучаемых на уроках математики и вне школьной программы. Применение признаков делимости.

    контрольная работа, добавлен 11.10.2021

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.