Построение кривых с помощью биквадратичного преобразования Г4

В работе рассматривается способ формообразования кривых с помощью биквадратичного преобразования Г4, где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости.

Подобные документы

  • Определение координат точки при переходе от одной системы координат к другой. Связь между старыми и новыми координатами при повороте координатных осей на некоторый угол. Кривые второго порядка. Уравнения окружности, эллипса, гиперболы и прямой общих точек

    лекция, добавлен 26.01.2014

  • Анализ многочленов Лежандра и Чебышева, преобразования Лапласа. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке, с применением смещенных многочленов Лежандра, смещенных многочленов Чебышева первого рода.

    контрольная работа, добавлен 01.12.2020

  • Понятие суждения, содержащего новое знание, которое может быть получено посредством преобразования некоторого суждения, при этом исходное суждение рассматривается как посылка, а суждение, полученное в результате преобразования, как умозаключение.

    контрольная работа, добавлен 25.02.2010

  • Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).

    лабораторная работа, добавлен 25.11.2014

  • Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.

    лекция, добавлен 30.04.2014

  • Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.

    презентация, добавлен 07.05.2014

  • Разработка модели, не имеющей фокальных линий конгруэнции первого порядка эквиаффинных образов окружностей, полученных на основе эллиптического поворота плоскости. Основные элементы полученной конгруэнции, типы координатных линий криволинейных координат.

    статья, добавлен 30.07.2017

  • Правила начертания и основные назначения линий на чертежах всех отраслей промышленности. Способы преобразования проекций. Расчет расстояния от точки до плоскости. Построение линии пересечения плоскостей. Взаимное пересечение поверхностей вращения.

    методичка, добавлен 23.09.2011

  • Изучение понятия, видов и особенностей применения вейвлетных функций. Свойства вейвлет-преобразования - линейность, инвариантность относительно сдвига и масштабирования, дифференцирование. Сущность дискретных и непрерывных ортогональных преобразований.

    реферат, добавлен 11.05.2013

  • Понятие о тригонометрическом выражении. Тригонометрические функции и формулы тригонометрии, используемые для преобразования тригонометрических выражений. Знаки тригонометрических функций. Примеры решения задач с использованием формул преобразования.

    презентация, добавлен 23.10.2013

  • Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений, исследование формы и параметры: полуоси, фокусное расстояние, эксцентриситет. Оптическое свойство кривых и исследование неполного уравнения кривой второго порядка.

    курс лекций, добавлен 26.12.2010

  • Разработка обучающего модуля по решению геометрических задач на построение. Примеры построения задач с помощью циркуля и линейки, схемы их решения. Определение свойства осевой симметрии плоскости. Метод осевой симметрии в решении задач на построение.

    реферат, добавлен 02.04.2014

  • Построение окружностей и касательных к ним. Формула Эйлера, инверсия и её свойства. Внутренние и внешние точки круга с границей. Треугольники, их отличия от подобия. Геометрия Мора-Маскерони, построения с помощью циркуля и линейки, их значение.

    реферат, добавлен 12.04.2012

  • Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.

    учебное пособие, добавлен 31.03.2015

  • Решение тригонометрического неравенства с помощью составленного алгоритмического предписания. Определение нулей и точек разрыва функции в левой части неравенства. Расстановка на единичной окружности точек, являющихся представителями всех найденных чисел.

    презентация, добавлен 15.05.2016

  • Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.

    курсовая работа, добавлен 30.07.2017

  • Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.

    курс лекций, добавлен 29.05.2014

  • Перечень возможных математических действий с разными по свойствам матрицами. Пути решения систем линейных уравнений. Очерк основных понятий в векторной алгебре. Параметры и виды кривых на поверхности второго порядка. Свойства эквивалентных функций.

    курс лекций, добавлен 23.07.2015

  • Ортогональное проецирование точки. Определение натуральной величины прямой линии. Следы плоскости. Позиционные и метрические задачи. Методы преобразования эпюра Монжа. Многогранники. Кривые поверхности. Касательные плоскости и аксонометрические проекции.

    учебное пособие, добавлен 06.05.2013

  • Характеристика шара и шаровой поверхности. Взаимное расположение шара и плоскости. Нахождение объёмов тел с помощью принципа Кавальери и интеграла. Алгоритм вычисления объема и площади поверхности шарового слоя и шарового сектора. Примеры решения задач.

    курсовая работа, добавлен 01.12.2015

  • Прямая и окружность. Построение на бумаге полного эллипса, циклоида, кривой кратчайшего спуска, спирали Архимеда, логарифмической спирали. Общее свойство конических сечений. Решение задач Архимеда, теоремы Паскаля. Разнообразие н богатства форм лемнискат.

    реферат, добавлен 31.10.2012

  • Геометрия у египтян. Греческая математика и система счисления. Дедуктивный характер греческой математики. Важный вклад арабов в математику. Начало современной математики. Алгебраические уравнения для представления и исследования кривых и поверхностей.

    реферат, добавлен 21.04.2010

  • Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

    курсовая работа, добавлен 03.11.2018

  • Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.

    учебное пособие, добавлен 02.05.2014

  • Проблема вычисления интеграла линейной интегральной оценки. Уравнение, описывающее свободное движение ошибки регулирования системы. Определение значение параметра, при котором интегральная оценка имеет минимум. Примерный вид кривых изменения ошибки.

    лекция, добавлен 22.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.