Осевая симметрия

Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.

Подобные документы

  • Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.

    курсовая работа, добавлен 23.04.2011

  • Определение терминов "движение плоскости" и "наложение". Особенности и свойства осевой симметрии. Центральная симметрия как движение, изменяющее направления на противоположные. Определение термина "параллельный перенос". Свойства скользящей симметрии.

    презентация, добавлен 13.01.2018

  • Основные закономерности и содержание геометрии Лобачевского, понятие псевдосферы, модели Клейна и Пуанкаре. Анализ поверхности постоянной отрицательной кривизны. Аксиоматика евклидовой геометрии: связь прямой и точки, отрезка непрерывности и плоскости.

    реферат, добавлен 21.10.2014

  • Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.

    курс лекций, добавлен 06.11.2009

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Подбор задач с параметром, решаемые с помощью аналитического и графического методами. Решение сложных и нестандартных задач по математике. Решение различных задач, позволяющее с помощью математических преобразований упростить выражение и найти ответ.

    курсовая работа, добавлен 02.06.2018

  • Задачи на нахождение площадей как наиболее распространённые в геометрии. Задача на нахождение минимума периметра треугольника. Теорема о средних. Частные случаи применения формулы Герона при решении задач на плоскости, равносторонний треугольник, квадрат.

    реферат, добавлен 30.03.2016

  • Изучение сущности начертательной геометрии, как науки о методах построения изображений пространственных форм на плоскости. Ознакомление с основными требованиями к чертежам. Характеристика особенностей ортогонального и параллельного проецирования.

    учебное пособие, добавлен 12.11.2014

  • Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.

    лекция, добавлен 29.09.2013

  • Характеристика отношения параллельности на плоскости Лобачевского. Анализ положений неевклидовой геометрии. Примеры видоизменения теорем, основанных на аксиоме параллельности. Анализ сущности параллельных и непараллельных линий в геометрии Лобачевского.

    презентация, добавлен 16.01.2017

  • Изучение особенностей сечения тетраэдра заданной плоскостью. Характеристика главных аспектов и теорем стереометрии. Рассмотрение основных свойств аксиом планиметрии и прямой лежащей в плоскости. Методика построение сечения тетраэдра через три точки.

    презентация, добавлен 18.12.2013

  • Расчет угла между ребрами пирамиды средствами векторной алгебры. Составление уравнения плоскости, проходящей через прямую. Решение методом Гаусса системы DX=K. Расчет размерности и базиса линейной оболочки векторов. Расчет кривых в системе координат XOY.

    контрольная работа, добавлен 08.03.2011

  • Основные понятия интегральных уравнений. Понятие интегральных преобразований и их таблица, преобразование Фурье, Лапласа и Меллина и их применение к решению интегральных уравнений. Преобразование Фурье и её применение к решению некоторых интегральных урав

    дипломная работа, добавлен 29.04.2024

  • Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Виды стереометрических тел: конус, призма, цилиндр, параллелепипед. Характеристика аксиом стереометрии, их доказательство. Способы задания плоскостей.

    презентация, добавлен 13.04.2012

  • Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

    реферат, добавлен 06.04.2009

  • Исследование формы, расположения и свойства линии на плоскости. Геометрический смысл уравнения прямой. Определение угла между двумя прямыми, условия их параллельности или перпендикулярности. Применение линейной зависимости в экономических задачах.

    презентация, добавлен 25.10.2016

  • Рассмотрение ряда плоских задач об истечении жидкости из сосудов. Поиск решений задач, позволяющих найти как форму линий тока, так и скорость в каждой точке области течения. Истечение струи из отверстия в плоскости. Изучение коэффициентов сжатия струи.

    статья, добавлен 02.02.2019

  • Сущность построения проекции вектора на ось. Определение расстояний от точки до прямой, до плоскости, между скрещивающимися прямыми. Нахождение угла между прямыми, прямой и плоскостью, плоскостями. Решение метрических задач векторно-координатным методом.

    курсовая работа, добавлен 28.12.2011

  • Доказательства теоремы, характеризующей решетку из зон Бриллюэна, компьютерное построение, восстановление потерянных деталей. Квазипериодическое замощение плоскости, свойства: инфляция и дефляция, перенос и поворот. Физические приложения квазикристаллов.

    реферат, добавлен 05.02.2011

  • Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.

    курс лекций, добавлен 10.09.2016

  • Исследование связи площади и скорости треугольников на плоскости. Введение понятия катастрофы, фокуса и жесткости. Отношение между треугольниками и числом соотношений, необходимых для его сохранений. Особенность уточнения и строгого доказательства.

    реферат, добавлен 18.02.2020

  • Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.

    лекция, добавлен 30.11.2010

  • Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.

    презентация, добавлен 15.10.2016

  • Определение понятия показательной функции, ее основные свойства. Решение уравнений путем равносильных преобразований с использованием правил умножения и деления степеней. Правила упрощения уравнений до элементарного путем равносильных преобразований.

    контрольная работа, добавлен 18.05.2017

  • Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.

    учебное пособие, добавлен 10.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.