Алгоритмы численного решения одномерных прямой и обратной задач распространения SH волн в пористых средах
Численный метод интегрирования вдоль характеристик, который эффективно вычисляет профиль коэффициента Ламе по заданному сейсмическому сигналу. Рекуррентные соотношения, позволяющие восстановить волновые поля смещений упругого пористого тела и жидкости.
Подобные документы
Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.
контрольная работа, добавлен 22.12.2014Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Актуальность решения текстовых задач в современной методике преподавания математики. Понятие и роль текстовых задач в курсе алгебры. Психолого-педагогические основы формирования умения решать данные задачи. Алгебраический и геометрический метод решения.
презентация, добавлен 01.03.2015Разработка подхода к ускоренному численному решению динамических задач большой размерности. Характеристика методов обоснования и тестирования вычислительных алгоритмов расчета декомпозированной задачи с применением современных компьютерных технологий.
автореферат, добавлен 25.07.2018Постановка и графический метод решения задач линейного программирования с двумя переменными. Построение математических моделей. Особенности симплексного метода решения задач линейного программирования, его основные положения, алгоритм, применение.
курсовая работа, добавлен 22.04.2011Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
статья, добавлен 27.06.2016Классические трудности, возникающие при решении расчетных задач, методология системного анализа их условий. Классификация учебных расчетных задач, способы математического описания заданной ситуации. Ориентировочные основы обобщенного метода решения.
курсовая работа, добавлен 30.07.2010Численное решение динамических задач механики деформируемого твердого тела. Создание гибридного и распараллеленного методов сглаженных частиц. Визуализация численных решений динамических трехмерных задач. Сравнение алгоритмов поиска ближайших соседей.
автореферат, добавлен 16.08.2018Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
учебное пособие, добавлен 13.01.2014Решение задач на доказательство теоремы о среднем для двойного и тройного интеграла. Построение области интегрирования. Вычисление площади плоской фигуры, ограниченной заданными линиями, и объема тела, ограниченного определенными поверхностями.
контрольная работа, добавлен 09.01.2014Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Основные правила составления двойственных задач. Связь между решениями прямой и двойственной задач. Геометрическая интерпретация двойственной задачи, ее примеры. Анализ устойчивости двойственных оценок. Двойственный симплекс-метод, области его применения.
лекция, добавлен 06.09.2017Порядковая логика – математический аппарат, широко применяемый при решении многих задач обработки, преобразования непрерывной информации. Рекуррентные соотношения для математической модели систолического алгоритма реализации функций порядковой логики.
статья, добавлен 22.08.2020Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
контрольная работа, добавлен 29.10.2012Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.
контрольная работа, добавлен 26.12.2011Дифференциальные уравнения и их применение в прикладных задачах. Математическая модель численного интегрирования дифференциальных уравнений. Математическое описание зависимости концентрации. Расчет профиля температур при нестационарной теплопроводности.
дипломная работа, добавлен 19.06.2015Недостатки геометрической интерпретации в решении задач линейного программирования. Принципиальные отличия вычислительных методов решения задач. Сущность симплекс–метода. Примеры решения задач линейного программирования с использованием симплекс-метода.
презентация, добавлен 04.01.2018Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014Описание метода координат и способов его применения на примере конкретных математических задач. Выделение умений, необходимых для успешного овладения методом координат и подбор задач, формирующих данные умения. Этапы решения задач методом координат.
дипломная работа, добавлен 09.02.2023Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
курсовая работа, добавлен 10.02.2019Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.
курсовая работа, добавлен 25.03.2010Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.
реферат, добавлен 21.01.2011Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.
курсовая работа, добавлен 14.06.2011Особенность определения комплексных чисел. Характеристика программы решения систем линейных и нелинейных уравнений. Основная сущность определения конечного результата численными методами с заданной погрешностью. Нахождение корней кубических задач.
лабораторная работа, добавлен 12.04.2015Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.
курсовая работа, добавлен 20.02.2019