Применение метода модифицированных функций Лагранжа для учета дополнительных связей в механических системах
Результаты формирования теоретических основ использования модифицированных функций Лагранжа, развитых в численных методах оптимизации, для учета дополнительных голономных связей в механических системах. Параметры модифицированных функций Лагранжа.
Подобные документы
Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.
лабораторная работа, добавлен 20.05.2015Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Особенности оценки роли множителя Лагранжа при нахождении условного экстремума функционала для движущейся механической системы. Функционал как принцип действия для механической системы с двумя степенями свобод, способы процедуры его восстановления.
статья, добавлен 27.02.2013Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.
лекция, добавлен 06.09.2017Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.
реферат, добавлен 02.10.2019Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
курсовая работа, добавлен 13.03.2014Знаходження функції на основі експериментальних даних за методом найменших квадратів для параболічної залежності. Пошук екстремуму функції за умови, що аргументи задовольняють умові зв’язку. Функція Лагранжа. Нормальна система методу найменших квадратів.
контрольная работа, добавлен 12.11.2017- 35. Численные методы
Основные методы и алгоритмы вычислительной математики. Точные и приближенные числа, классификация погрешностей. Интерполирование функций, формула Лагранжа. Методы решения нелинейных уравнений, матричных уравнений и задач на собственные значения.
учебное пособие, добавлен 16.12.2016 Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.
контрольная работа, добавлен 16.10.2017Доказывание теоремы признаков дифференцируемости обобщенной производной Шварца, в отличие от функций, дифференцируемых по Ньютону. Исследование существований левой и правой производных. Суть формулы Лагранжа конечных приращений классического анализа.
статья, добавлен 20.05.2018Последовательность действий при использовании уравнений Лагранжа II рода для решения задач о движении голономных систем. Описание модели наземного артиллерийского орудия. Расчет кинетической энергии системы. Виртуальная работа сил, действующих на нее.
контрольная работа, добавлен 13.05.2014Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.
лекция, добавлен 07.07.2015Определение псевдопараболических уравнений по характеру свойств решений. Решение задачи сопряжения для псевдопараболических уравнений третьего порядка с использованием тождества Лагранжа, функций Грина и Римана. Определение условий разрешимости уравнения.
статья, добавлен 18.05.2016Разработка новых методов аппроксимации широкого класса функций - локально липпшцевых функций, построение на их основе новых методов оптимизации негладких гладких функций, к которым неприменимы условия сходимости оптимизационных процессов высокого порядка.
автореферат, добавлен 21.03.2015Исследование линейно-квадратичной задачи управления процессом колебаний мембраны. Применение метода множителей Лагранжа. Получение системы интегро-дифференциальных уравнений Риккати с частными производными. Определение необходимых условий оптимальности.
статья, добавлен 28.08.2016Построение общего решения характеристического однородного уравнения. Запись неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и специальной правой частью. Применение метода Лагранжа вариации произвольных постоянных.
методичка, добавлен 17.05.2023Получение концепции алгебраических уравнений, удовлетворяющих коэффициенты. Рассмотрение особенностей интегральных задач Фредгольма. Характеристика использования симметричности ядра при решении заданий. Вычисление функций о собственных колебаниях систем.
курсовая работа, добавлен 13.01.2017Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
лекция, добавлен 05.03.2009Последовательность и вид многочленов на конечной степени точек в частных случаях. Сила нормированности. Определение коэффициентов Фурье. Применение метода наименьших квадратов. Ортогональные многочлены системы. Интерполяционный многочлен Лагранжа.
контрольная работа, добавлен 20.05.2013Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.
презентация, добавлен 18.09.2013