Многоугольник. Виды многоугольников
Многоугольник как замкнутая ломаная без самопересечений. Виды определения многоугольника. Общие свойства многоугольников и связанные определения. Ломаная с самопересечением и замкнутая ломанная. Выпуклые и невыпуклые, описанные и вписанные многоугольники.
Подобные документы
Классификация проблем принятия решений. Примеры аналоговых, физических и математических моделей. Принятие решений в условиях определенности. Графический метод решения задач линейного программирования, многоугольник решений, максимум целевой функции.
лекция, добавлен 23.08.2016Основные виды степенной функции и ее свойства. Область определения функции. Частные случаи степенной функции. Определение возрастания и убывания функции. Построение графика функции при положительном и отрицательном значениях степенного показателя.
презентация, добавлен 05.03.2012Первичные определения в регистровых наборах. Виды аттракторов. Конкатенация как инструмент конструирования. Типы репеллеров. Уникальные свойства дискретных аттракторов. Направления применения, модели агрегации и роста. Структура с двумя операторами.
дипломная работа, добавлен 09.07.2016Передаточная функция разомкнутой системы, ее равенство произведению функций отдельных звеньев. Вычисление передаточной функции замкнутой системы, ее устойчивость согласно критерию Найквиста. Поиск критического коэффициента усиления разомкнутой системы.
реферат, добавлен 02.02.2011История появления понятия функции, формулировки ее определения с механической, геометрической и аналитической точек зрения. Роль функциональных зависимостей в познании реального мира. Виды функций и их свойства. Методические рекомендации к их изучению.
реферат, добавлен 28.09.2011Роль гипотез при разработке моделей. Их свойства: неполнота, адекватность, простота и потенциальность. Возможные виды задач, появляющиеся при математической постановке задачи моделирования, проверка корректности. Обоснование выбора метода решения задачи.
презентация, добавлен 07.06.2016Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.
лекция, добавлен 29.09.2014Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.
практическая работа, добавлен 07.09.2016Ориентированные, неориентированные и смешанные графы. Понятие деревьев и их основные свойства, связность вершин, ацикличность. Определения путей в графе. Решение задачи по определению числа путей заданной длины, составление компьютерной программы.
курсовая работа, добавлен 18.12.2014Формирование умения выполнять тождественные преобразования, используя свойства логарифмов. Область определения функции. Логарифмы с одинаковыми и разными основаниями. Основные свойства логарифмов. Вычисление произведения, частного и степени логарифмов.
разработка урока, добавлен 12.12.2011Виды правильных многогранников. Равносторонние треугольники в составе тетраэдра. Модель солнечной системы Кеплера. Икосаэдро-додекаэдровая структура Земли. Выпуклые правильные многогранники. Теорема Эйлера, тела Архимеда. Многогранники в химии и биологии.
презентация, добавлен 06.03.2012Число пи как отношение длины окружности, как траектории движения материальной точки вокруг силового центра, к ее диаметру, история его определения. Сущность и главные принципы физического метода определения данного численного значения, его обоснование.
статья, добавлен 20.10.2013Основные свойства и построение графиков степенной, показательной, логарифмической, тригонометрической и обратной тригонометрической функций. Определение элементарных функций, области их определения и значений. Примеры элементарных функций и их свойства.
курсовая работа, добавлен 30.04.2014- 65. Выпуклые функции
Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.
методичка, добавлен 08.09.2015 Статистические таблицы как наиболее эффективная форма представления результатов сводки. Относительные величины их виды, способы расчета и область применения. Методика определения коэффициента детерминации и эмпирического корреляционного отношения.
шпаргалка, добавлен 22.04.2016Свойства метрической проекции в гильбертовом пространстве. Анализ метрики Хауедорфа в пространстве замкнутых подмножеств. Изучение метрической проекции в банаховом пространстве, при доказательстве теоремы о неподвижной точке для многозначных отображений.
контрольная работа, добавлен 30.07.2017Методы определения вероятности и их сущность. Математическое ожидание и теоремы связанные с ним. Понятие о дисперсии, среднеквадратичном отклонении и моментах случайной величины. Корреляционная зависимость, функция регрессии, коэффициент корреляции.
методичка, добавлен 16.03.2017Феномен пирамидальных усыпальниц фараонов Древнего Египта. Различные трактовки математического определения пирамиды, ее виды, симметрия, методы вычисления объема и площади. Основные теоремы, связывающие пирамиду с другими геометрическими телами.
аттестационная работа, добавлен 05.09.2013Исследование показательной функции как взаимно обратной, ее свойства и график. Понятие логарифмической функции, ее основные свойства, графики функции и нахождение области определения. Практическая значимость логарифмической и показательной функций.
презентация, добавлен 14.11.2015Понятие призмы как геометрического тела, история создания этой фигуры, геометрические свойства, сфера применения и способ расчета ее площади. Определение, виды и свойства параллелепипеда, доказательство его симметричности относительно середины диагонали.
реферат, добавлен 30.04.2009Понятие и история развития геометрии как области научного знания, ее современные достижения и дальнейшие перспективы. Измерение площадей и используемые единицы измерения. Методы определения данного показателя: взвешивания, подсчета клеток, формула Пика.
научная работа, добавлен 03.05.2019- 73. Тела вращения
Определение тела вращения. Виды, сечения вращения цилиндра, конуса и шара. Расчеты и формулы для определения площади поверхности этих геометрических тел. Варианты взаимного расположения сферы и плоскости. Практические примеры решения задач по геометрии.
презентация, добавлен 10.05.2015 Особенности определения показательной функции. График и свойства этой математической величины. Понятие и особенности показательных уравнений, характеристика нескольких способов их решения. Свойства показательных неравенств, описание способов их решения.
презентация, добавлен 24.10.2012Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.
презентация, добавлен 29.10.2017