Понятие матриц
Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.
Подобные документы
Понятие системы счисления как совокупности правил и приемов записи чисел с помощью набора цифровых знаков. Основные типы систем счисления: позиционные и непозиционные. Запись чисел в римской системе счисления. Математические свойства "золотой пропорции".
реферат, добавлен 08.10.2010Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
шпаргалка, добавлен 23.01.2011Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.
реферат, добавлен 02.05.2019Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011- 81. Ранг матрицы
Определение минора k-го порядка матрицы. Использование методов окаймляющих миноров и элементарных преобразований для вычисления ее ранга. Линейная зависимость строк (столбцов) математических таблиц. Исследование систем линейных алгебраических уравнений.
презентация, добавлен 29.08.2015 Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Умножение элементов строки (столбца) матрицы. Понятие системы линейных уравнений и ее решения. Коэффициенты системы и свободные члены. Теорема Кронекера-Капелли. Линейная комбинация базисных столбцов матрицы. Условия существования решения системы.
лекция, добавлен 15.09.2017Векторные пространства и линейные преобразования. Изучение основных типов матриц. Простейшие операции с матрицами. Устойчивость систем управления. Определение необходимого условия устойчивости. Сложение, вычитание и умножение транспонированных матриц.
реферат, добавлен 03.10.2017Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.
презентация, добавлен 27.09.2017Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.
лекция, добавлен 29.09.2013- 89. Обратная матрица
Обратная матрица, её свойства, определитель, транспонирование. Характеристика способов нахождения обратной матрицы: точечные, итерационные. Метод Гаусса-Жордана, разложение, использование союзных матриц. Методы Шульца, выбор начального приближения.
реферат, добавлен 25.03.2016 Формирование матрицы А размера nxm посредством цикла for. Разработка математической модели. Математические операции с полученными выражениями. Формирование двух произвольных матриц А и В порядка m при помощи цикла for и генератора случайных чисел rnd.
контрольная работа, добавлен 15.10.2013Система счисления как совокупность правил наименования и изображения чисел с помощью конечного набора символов, называемых цифрами. Развернутая форма записи чисел. Алгоритм перевода чисел из любой системы счисления в десятичную. Таблица сложения чисел.
контрольная работа, добавлен 27.06.2012Представление синусоидального тока комплексными величинами. Матричная алгебра, предмет и содержание ее исследований, современные тенденции и достижения. Понятие и характерные свойства матрицы размера. Вычисление обратных матриц различными способами.
реферат, добавлен 15.06.2013Главная задача численных методов. Система Линейных Алгебраических Уравнений (СЛАУ), их проблематика. Методы решения поставленных задач. Порядок обращения матриц. Число обусловленности, описание метода Гаусса. Обзор программного модуля для Турбо Паскаль.
курсовая работа, добавлен 21.12.2012Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
презентация, добавлен 21.09.2017Полная и сокращенная запись квадратной и прямоугольной матрицы, понятие вектора. Основные виды операций, производимых над матрицей: транспонирование, произведение на матрицу и на число, сумма. Свойства определителей, их разложение по строке или столбцу.
реферат, добавлен 16.06.2014- 96. Блочные матрицы
Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".
курсовая работа, добавлен 18.05.2013 Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.
задача, добавлен 31.07.2011Декомпозиция при моделировании в электроэнергетике. Структура электроэнергетики Украины. Элементы теории матриц. Определители и их свойства. Обратная матрица. Алгоритм сканирования. Обращение матрицы методом разбиения на блоки. Формулы Фробениуса.
курс лекций, добавлен 18.08.2013Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.
курсовая работа, добавлен 22.01.2016