Предельные теоремы теории вероятностей

Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

Подобные документы

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.

    курсовая работа, добавлен 07.06.2014

  • Сущность нормального закона распределения, его место в математической теории вероятностей. Определение плотности и функции нормального распределения, расчет его начальных и центральных моментов. Подсчет асимметрии, эксцесса. Моды и медиана закона Гаусса.

    реферат, добавлен 24.04.2014

  • Общее понятие условной вероятности. Доказательство теоремы: вероятность произведения двух событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, вычисленную при условии, что первое событие имело место.

    презентация, добавлен 01.11.2013

  • Построение цепочки силлогизмов для создания доказательства, утверждающего истинность теоремы. Классификация теорем по логической структуре, характеристика необходимых и достаточных условий. Существующие системы аксиом, предъявляемые к ним требования.

    презентация, добавлен 15.02.2012

  • Применение локальной теоремы Муавра-Лапласа при решении задач. Составление закона распределения случайной величины, определение математического ожидания, дисперсии. Вычисление средней квадратической ошибки выборки. Построение эмпирических линий регрессии.

    задача, добавлен 16.10.2017

  • Завершение проблемы великой теоремы Ферма (ТФ). Бесконечный спуск для нечётных показателей. Доказательство ТФ методами элементарной алгебры. Алгоритм решения Диофантовых уравнений. Закономерность распределения простых чисел в натуральном числовом ряду.

    статья, добавлен 30.03.2017

  • Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.

    учебное пособие, добавлен 15.01.2014

  • Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.

    учебное пособие, добавлен 22.06.2014

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.

    контрольная работа, добавлен 25.05.2015

  • Первое доказательство частного случая центральной предельной теоремы. Определение нормального распределения. Свойства нормальной кривой Гаусса. Определение экстремума функции. График функции плотности распределения. Максимальная дифференциальная энтропия.

    реферат, добавлен 05.03.2020

  • Теорема Пифагора - жемчужина античной математики. Не алгебраические и алгебраические доказательства теоремы. Математические трактаты Древнего Китая. Сравнение доказательства Евклида с древнекитайскими или древнеиндийскими. Головоломка "Пифагор".

    реферат, добавлен 07.06.2009

  • На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.

    статья, добавлен 11.07.2018

  • Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.

    лекция, добавлен 26.07.2015

  • Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.

    реферат, добавлен 03.04.2017

  • Условия Фукса, необходимые и достаточные для отсутствия в интегралах критических алгебраических особых точек. Доказательство теоремы Пенлеве о том, что интегралы рассматриваемых интегральных уравнений не имеют подвижных существенно особых точек.

    реферат, добавлен 20.01.2012

  • Ферма и Паскаль - основатели математической теории вероятностей. Изобретение Паскалем арифметической машины. Введение Гюйгенсом понятия математического ожидания. Применение теории вероятностей в различных областях. Зарождение "статистической физики".

    статья, добавлен 25.07.2018

  • Определение подобия треугольников в математике. Доказательство первого признака подобия треугольников. Теоремы второго и третьего признаков подобия и их доказательство. Пропорциональные отрезки в прямоугольном треугольнике. Формулировки теоремы Фалеса.

    презентация, добавлен 25.04.2012

  • Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.

    методичка, добавлен 07.06.2012

  • Сущность теории формирования образов в матричной форме с помощью теоремы Габора. Анализ формульного выражения волнового уравнения. Исследование фазового пространства в геометрической оптике по принципу Ферма. Определение координат и индекса луча.

    статья, добавлен 18.10.2013

  • Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.

    презентация, добавлен 17.09.2013

  • Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.

    статья, добавлен 03.03.2018

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    контрольная работа, добавлен 05.05.2013

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.