Числа Бетти и трианалитические подмногообразия гиперкэлеровых многообразий
Доказательство отсутствия абсолютно трианалитических торов в обобщённом многобразии Куммера. Обобщение основных результатов Гуана для гиперкэлеровых многообразий большей размерности и получение ограничений на числа Бетти гиперкэлеровых многоообразий.
Подобные документы
- 76. Арифметика чисел
Натуральні числа, використовувані в математиці. Загальне ділення з остачею. Взаємно-прості та прості числа. Найбільший спільний дільник та методи його знаходження. Порівняння за модулем Лема. Арифметичні дії з раціональними числами і десятковими дробами.
лекция, добавлен 24.01.2014 Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.
курс лекций, добавлен 02.06.2015Определение вероятности того, что среди шести взятых одновременно деталей три окажутся первого вида. Проведение расчета вероятного числа студентов, родившихся 1 мая. Особенности применения полиноминальной схемы. Анализ закона распределения числа.
задача, добавлен 07.11.2013Історія досліджень алгебраїчних та трансцендентних чисел. Викладення тверджень про трансцендентність деяких важливих математичних сталих. Корінь многочлена, коефіцієнтами якого є алгебраїчні числа. Відомі трансцендентні константи, перше їх використання.
реферат, добавлен 13.11.2014Аналіз історії виникнення основної проблеми ірраціонального числа. Доцільні суми як нескінченні десяткові періодичні дроби. Модуль числової дійсності та його властивості. Особливості геометричного змісту величини повноважного чисельного результату.
курсовая работа, добавлен 28.01.2016Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.
разработка урока, добавлен 20.09.2019- 82. Число "Пи"
"Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".
доклад, добавлен 31.01.2018 - 83. Числа Эйлера
Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.
реферат, добавлен 01.10.2013 Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.
разработка урока, добавлен 08.06.2019Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
курсовая работа, добавлен 29.11.2014Дослідження означення арифметичного квадратного кореня з невід'ємного числа. Характеристика способу розв'язання найпростіших ірраціональних рівнянь. Особливість ознайомлення учнів з новою дією, що допоможе знайти число за значенням його квадрата.
разработка урока, добавлен 12.10.2018Комплексные числа и их роль в науке. Их способность представлять вращения и масштабные преобразования в плоскости, описывать волновые процессы и колебания. Применение комплексных чисел в теории относительности, квантовой механике, электродинамике.
статья, добавлен 13.12.2024Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.
курс лекций, добавлен 27.08.2017Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
реферат, добавлен 26.03.2019История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010- 91. Числа Бернуллі
Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.
курсовая работа, добавлен 22.01.2015 Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.
творческая работа, добавлен 26.04.2019Определение процента (части) от числа. Определение числа по его части, выраженной в процентах. Процентное сравнение чисел (величин). Примеры изменения цены при повышении на 25 % и понижении на 25 %. Задачи на "усыхание" по теме "Смеси, сплавы, растворы".
презентация, добавлен 06.11.2014Рассматривается специальная задача об эргономичном размещении конечного числа символов по конечному числу ячеек. Решение задачи применяется для более удобного размещения английских и русских букв на клавиатуре мобильного телефона.
статья, добавлен 10.11.2015С помощью связности, заданной над распределением субфинслерова многообразии M контактного типа с нулевым тензором кривизны Схоутена, на тотальном пространстве векторного расслоения определение контактной метрической структуры - структуры Кенмоцу.
статья, добавлен 21.01.2018Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.
учебное пособие, добавлен 19.04.2013Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.
презентация, добавлен 21.09.2013История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Зарождение счета в глубокой древности. Появление систем счисления. Исследование процесса формирования понятия натурального числа. Вавилонские клинописные обозначения числа. Создание счетных приборов. Осознание людьми бесконечности натурального ряда чисел.
реферат, добавлен 13.02.2015