Построение трансляционных матриц для неоднородных дифференциальных операторов
Ознакомление с алгоритмом построения трансляционных матриц для неоднородных дифференциальных операторов на примере уравнения Пуассона. Рассмотрение и характеристика особенностей операторов Лапласа и Гельгольца в задачах электростатики и электродинамики.
Подобные документы
Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Особенности определения технических показателей работоспособности проектируемой системы массового обслуживания. Характеристика аспектов решения уравнения Колмогорова. Определение требуемого количества операторов для безотказного функционирования.
контрольная работа, добавлен 20.12.2014Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014История возникновения и использования матриц в алгебре. Рассмотрение основных понятий и типов матриц. Основные арифметические операции над матрицами. Свойства умножения матриц на число. Вычисление определителей второго и третьего порядка в матрице.
контрольная работа, добавлен 15.11.2017Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Изучение применения метода орбит в теории интерполяции операторов, а также в некоторых вопросах системного анализа. Оптимальное интерполяционное пространство для весовых банаховых пар. Применение метода орбит к доказательству существования базиса.
курс лекций, добавлен 28.07.2015Анализ полученных результатов, связанных с обобщением неравенств Харди-Литтлвуда-Полиа на случай достаточно произвольных операторов, действующих в сепарабельном пространстве. Анализ сепарабельного гильбертового пространства над полем комплексных чисел.
статья, добавлен 30.10.2016Модули Капланского-Гильберта над L0. L0-линейные и L0-ограниченные отображения. Спектр L0-линейных и L0-ограниченных операторов. Спектральная теорема для линейных L0-ограниченных самосопряженных операторов в q-конечномерных модулях Капланского-Гильберта.
диссертация, добавлен 19.06.2015Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Оценка эффективности деятельности операторов автоматизированного командного пункта в процессе тренажной подготовки. Система оценивания действий операторов. Метод получения обобщенной оценки деятельности оператора с использованием нечетких термов.
статья, добавлен 14.07.2016Виды матриц, линейные операции над ними. Умножение квадратных матриц первого и второго порядков. Вычисление обратных матриц второго и третьего порядков. Решение линейных уравнений методами Крамера и Гаусса. Применение матриц в различных областях науки.
реферат, добавлен 02.12.2014Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами методом Эйлера. Система линейно независимых решений и определитель Вронского. Применение явления резонанса. Способы гашения нежелательных вынужденных колебаний.
дипломная работа, добавлен 27.02.2020Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
курсовая работа, добавлен 11.01.2015Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.
курсовая работа, добавлен 23.10.2017- 42. Матричный анализ
Понятие функции от матрицы: определение, значение, основные свойства. Построение интерполяционного многочлена Лагранжа-Сильвестра. Спектральная теорема для простых матриц и ее следствие. Характеристика эрмитовых, квадратичных и неотрицательных матриц.
контрольная работа, добавлен 31.10.2010 Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.
курсовая работа, добавлен 04.12.2018Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.
презентация, добавлен 07.05.2020Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.
реферат, добавлен 29.11.2015Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Понятие, основные виды (скалярная, единичная, нулевая, транспонированная) и равенство матриц как множества чисел, образующих прямоугольную таблицу, определение вектора. Характеристика операций над матрицами в линейной алгебре. Свойства умножения матриц.
лекция, добавлен 18.03.2016- 50. Матрицы Адамара
Характеристика матриц Адамара и некоторые их обобщения. Процесс вычисления наибольшего возможного числа положительных слагаемых при раскрытии определителя. Определение основных методов построения вещественных матриц Адамара, их специфика и применение.
статья, добавлен 26.05.2017