Линейная алгебра с приложениями
Решение задач по линейной алгебре, тензорному исчислению, системам дифференциальных уравнений и теории устойчивости. Линейная зависимость векторов. Сумма и перечисление подространств. Ортогонализация по Граму-Шмидту. Матрица сопряженного оператора.
Подобные документы
Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Примеры различных операций и вычислений с векторами и матрицами в линейной алгебре. Теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования. Алгоритм оценки величины и нахождения собственных значений. Отношение Рэлея.
реферат, добавлен 26.01.2012Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.
контрольная работа, добавлен 26.02.2012Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.
контрольная работа, добавлен 12.12.2012Элементы линейной алгебры и ее следование из вычислительных задач. Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов поля, представляющая совокупность строк и столбцов, на пересечении которых находятся её элементы.
презентация, добавлен 19.12.2015Учебное пособие содержит краткий теоретический материал по определителям и матрицам, системам линейных уравнений, векторной и линейной алгебре, аналитической геометрий на плоскости и в пространстве, функциям и вычислению, дифференциальному исчислению.
учебное пособие, добавлен 07.05.2014Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.
презентация, добавлен 21.09.2013Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.
шпаргалка, добавлен 25.03.2011Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.
учебное пособие, добавлен 25.11.2012- 11. Линейная алгебра
Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.
контрольная работа, добавлен 20.03.2017 Линейная зависимость векторов. Уравнение прямой, проходящей через две точки. Общее уравнение кривых второго порядка. Каноническое уравнение гиперболы и эллипса. Квадратичные формы переменных. Тригонометрическая форма комплексного числа, Bзвлечение корня.
контрольная работа, добавлен 13.09.2009Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.
курс лекций, добавлен 11.10.2014- 14. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
учебное пособие, добавлен 17.04.2013 - 15. Линейная алгебра
Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.
методичка, добавлен 29.12.2015 Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Исследование линейной устойчивости относительно нормальных возмущений адвективного течения во вращающемся слое жидкости с твердыми границами методом дифференциальной прогонки. Амплитуды возмущений скорости и температуры в виде системы уравнений.
статья, добавлен 26.04.2019Вычисление определителей, матрицы и их свойства. Решение систем линейных уравнений и типовых примеров задания 1 РГР. Векторные и скалярные величины. Разложение вектора по координатным осям. Длина и направление отрезка. Прямая линия на плоскости.
методичка, добавлен 22.09.2017Изучение принципов работы с пакетом электронных таблиц MS Excel и такими его компонентами, как вставка формул, подбор параметра, поиск решения. Постановка и решение задач линейной оптимизации средствами пакета MS Excel на примере конкретного задания.
курсовая работа, добавлен 11.06.2011Нахождение обратной матрицы. Решение квадратных систем линейных алгебраических уравнений матричным методом и по правилу Крамера. Метод Жордановых исключений. Собственные векторы и собственные значения. Приведение квадратичной формы к каноническому виду.
курс лекций, добавлен 11.04.2013Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.
научная работа, добавлен 22.07.2014- 22. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
лекция, добавлен 28.07.2015 Понятие направления. Свойства операции сложения векторов. Умножение вектора на число. Линейная зависимость векторов. Координаты вектора. Скалярное произведение векторов. Векторное произведение двух векторов. Смешанное произведение трех векторов.
методичка, добавлен 17.05.2012Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
методичка, добавлен 14.12.2010Совместность системы линейных уравнений методом Гаусса; средствами матричного исчисления. Решение векторных задач методом Крамера. Условие линейной независимости и координаты векторов в базисе. Решение задач с построением графика, пределы функции.
контрольная работа, добавлен 11.03.2012