Архитектуры и алгоритмы функционирования нейронных сетей Хемминга и Хебба, способных дообучаться и распознавать новую информацию
Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
Подобные документы
Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Анализ основных способов представления информации в нейронных сетях. Общая характеристика теории адаптивного резонанса. Знакомство с современными нейросетевыми архитектурами. Рассмотрение особенностей моделей Липпмана-Хемминга, Хехт-Нильсена и Коско.
лекция, добавлен 07.08.2013Особенности применения искусственных нейронных сетей для решения задачи классификации уровня формирования. Анализ решения задачи автоматической классификации уровня формирования по данным об идентифицированных объектах на электронной карте местности.
статья, добавлен 02.04.2019Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.
курсовая работа, добавлен 16.05.2016Описание разработанной методики синтеза импульсных рекуррентных нейронных сетей в составе машины неустойчивых состояний для решения задачи распознавания динамических образов в рамках парадигмы резервуарных вычислений. Входные данные и их предобработка.
статья, добавлен 15.01.2019Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.
курс лекций, добавлен 17.01.2011Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
методичка, добавлен 03.07.2017Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021- 19. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.
лекция, добавлен 06.09.2017Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.
реферат, добавлен 17.05.2013