Программа эконометрики
Моделирование на основе временных рядов. Формальные критерии аппроксимации и статистические гипотезы. Изучение моделей с переменной структурой. Проверка на значимость коэффициентов регрессии. Руководство по использованию программы Time Series Processing.
Подобные документы
Рассмотрение понятия временных рядов, а также основных задач их анализа. Нахождение трендового компонента и сезонной составляющей. Проверка предположения об остатках. Составление прогноза временного ряда для аддитивной и мультипликативной моделей.
контрольная работа, добавлен 15.10.2017Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
презентация, добавлен 23.04.2015Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Ознакомление с линейным уравнением множественной регрессии. Определение и характеристика ошибки аппроксимации. Рассмотрение и анализ результатов сравнения коэффициентов частной и парной корреляции. Изучение уравнение степенной и линейной модели.
контрольная работа, добавлен 09.01.2017Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Определение среднего значения исследуемого параметра для каждой точки факторного пространства. Проверка гипотезы однородности дисперсий по критерию Корхена. Значения коэффициентов уравнения регрессии. Проверка адекватности математической модели.
курсовая работа, добавлен 03.11.2020F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Важнейшие показатели изменения уравнений рядов динамики. Аналитическое выравнивание временных рядов. Моделирование тенденции развития. Сглаживание временных рядов с помощью скользящих средних. Анализ курса доллара по отношению к белорусскому рублю.
курсовая работа, добавлен 24.11.2014Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.
лабораторная работа, добавлен 06.10.2016Постановка задачи одномерной минимизации и классификация одномерных функций. Алгоритм Свенна для поиска интервала унимодальности. Разработка алгоритма последовательной квадратичной аппроксимации. Расчет коэффициентов аппроксимации в Microsoft Excel.
курсовая работа, добавлен 19.06.2014Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.
презентация, добавлен 20.01.2015- 13. Временные ряды
Разновидности временных рядов. Требования к исходной информации. Стохастические и детерминированные проблемы. Задачи корреляционного анализа. Сравнение последовательностей с помощью корреляции и выявление динамических рядов. Построение временных рядов.
курсовая работа, добавлен 06.06.2012 Моделирование нестационарных неэквидистантных временных рядов по математическому ожиданию и дисперсии. Анализ аппроксимативного метода построения аналитической модели тренда и дисперсии нестационарного временного ряда с помощью ортогональных разложений.
статья, добавлен 31.08.2018Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
лекция, добавлен 10.10.2014Простые и сложные статистические гипотезы. Параметрические и непараметрические критерии оценки их достоверности. Анализ гипотез в практике лесного хозяйства, базирующихся на анализе параметров выборочной совокупности и распределении случайных величин.
лекция, добавлен 29.03.2018Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014Определение и проверка значения коэффициентов уравнения регрессии. Число степеней свободы в дисперсии адекватности. Получение уравнения регрессии 1 и 2 порядка в результате планирования и постановки эксперимента с учетом математических преобразований.
курсовая работа, добавлен 30.05.2018Определение параметров для составления линейного уравнения парной регрессии посредствам построения электронной таблицы Excel. Оценка качества построенной модели на основе коэффициента парной корреляции, детерминации и средней ошибки аппроксимации.
лабораторная работа, добавлен 30.03.2015Сущность задачи о случайных блужданиях. Статистические свойства временных рядов, представляющих собой фиксации логарифмических приращений цен акций и фондовых индексов. Применение моделей негауссовых случайных блужданий для описания реальной системы.
автореферат, добавлен 28.10.2018Основные понятия теории вероятности и математической статистики, классическое определение вероятности. Нахождение формального критерия сравнения дендроклиматологических рядов деревьев. Проверка гипотезы о влиянии климата на рост древесных колец.
курсовая работа, добавлен 26.03.2019Построение уравнения парной регрессии с помощью программы Excel по данным, описывающим зависимость уровня рентабельности на предприятии от скорости товарооборота. Вычисление коэффициента эластичности и расчет ошибки аппроксимации линейной модели.
контрольная работа, добавлен 19.10.2016Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.
статья, добавлен 24.02.2019- 24. Гибридные математические модели и методы прогнозирования временных рядов с учётом внешних факторов
Предложение модели различной сложности для прогнозирования нестационарных ВР с учётом экзогенных факторов. Обзор методов идентификации этих моделей на основе совместного использования многомерного варианта метода "Гусеница"-SSA и моделей SARIMAX.
статья, добавлен 30.10.2016 Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.
контрольная работа, добавлен 12.01.2015