Деревья и их свойства (частный вид графов)
Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.
Подобные документы
- 101. Задача коммивояжера
Определение последовательности объезда городов, которая обеспечит минимальное время переезда. Решение задачи о коммивояжере методом ветвей и границ. Неориентированный и ориентированный граф задачи коммивояжера. Теория графов и сетевого моделирования.
контрольная работа, добавлен 29.04.2011 - 102. Группы с операторами
Подгруппы и факторгруппы групп с операторами. Теоремы о гомоморфизмах. Содержание и принципы реализации теорем Шура – Цассенхауза и Фейта – Томпсона. Понятие и содержание, свойства обобщенной подгруппы Фраттини. Расширения посредством автоморфизмов.
курсовая работа, добавлен 08.01.2013 - 103. Алгоритм Маркова
Понятие нормального алгоритма Маркова как одного из стандартных способов формального определения понятия алгоритма. Особенности понятия ассоциативного исчисления. Характеристика суперпозиции, объединения, разветвления и итерации алгоритмов и их специфика.
реферат, добавлен 03.10.2014 Свойства треугольной последовательности биномиальных коэффициентов Паскаля. Применение теории графов находит в современных геоинформационных системах. Статистические методы организации выборок, связь математической статистики с теорией вероятностей.
реферат, добавлен 13.11.2013Характеристика методов определения тематики запроса, используя графовые модели данных. Изучение особенностей хранения данных в ориентированном и неориентированном графе. Описание методики построения как ориентированного, так и неориентированного графа.
статья, добавлен 29.07.2018Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.
книга, добавлен 28.12.2013Характеристика ориентированного графа, путь и длина пути в графе. Элементарный путь и контур. Полустепень исхода и полустепень захода вершины. Матрица смежности графа и матрица инциденций. Двухполюсная транспортная сеть и условия ее существования.
контрольная работа, добавлен 15.12.2010Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.
статья, добавлен 15.01.2019Ознакомление с сущностью прямых и обратных задач инженерной графики. Рассмотрение основных свойств ортогонального проецирования. Формулирование теоремы о проецировании прямого угла. Определение угла наклона прямой, общего положения к плоскостям проекций.
лекция, добавлен 24.07.2014Определение понятия динамического звена. Особенности описания динамических звеньев в виде нелинейных дифференциальных уравнений. Свойства передаточной функции. Использование теоремы преобразования Лапласа. Математическая модель объекта управления.
лекция, добавлен 23.07.2015Бесперспективность проверки существования нераскрашиваемого графа путем полного перебора. Задача построения однодневного расписания учебных занятий. Проверка существования гармонической раскраски у каждого графа. Применение рекурсивной процедуры AddSplit.
статья, добавлен 21.06.2018Основные понятия теории графов и ее приложения к исследованию линейных систем, задачам минимизации, а также сетевого планирования. Приведение примеров решения задач различной сложности с подробными объяснениями. Задачи для самостоятельной работы.
методичка, добавлен 18.06.2013Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.
курсовая работа, добавлен 28.05.2019Элементы косого четырехугольника и их свойства. Классические теоремы о замечательных точках косого четырехугольника. Зависимость между углами, сторонами и диагоналями косого четырехугольника. Основные признаки, свойства и теоремы косого параллелограмма.
дипломная работа, добавлен 08.03.2013Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.
реферат, добавлен 03.04.2017Способы задания множеств и бинарных отношений. Основные логические операции. Представление булевых функций. Понятия логики предикатов. Описание теории графов, конечных автоматов, языков и элементов кодирования. Расчет максимального потока в сетях.
учебное пособие, добавлен 13.01.2015Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.
курсовая работа, добавлен 26.11.2014Арифметическое доказательство формул, которые не содержат индивидных переменных. Определение синтаксического дерева. Характеристика свойств синтаксических деревьев. Некоторые свойства арифметических термов. Некоторые свойства арифметических выводов.
статья, добавлен 28.10.2018Место теоремы Пифагора в школьном курсе геометрии. Прямоугольный треугольник и его особенные свойства. Расчет катетов и гипотенузы. Квадрат, построенный на гипотенузе прямоугольного треугольника. Рассмотрение некоторых доказательств теоремы Пифагора.
статья, добавлен 05.05.2019Сущность понятия "логарифм", основное тождество. Свойства и параметры логарифмов. Понятие "решение уравнения". Пример решения уравнения, содержащего параметры в логарифмируемом выражении. Особенности решения уравнения, содержащего параметры в основании.
презентация, добавлен 15.04.2012Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.
реферат, добавлен 30.03.2017Этапы разработки программы для решения задачи нахождения наибольшего паросочетания в двудольном графе. Модули программы: характеристика и алгоритмы тестирования. Особенности разработки графического интерфейса с возможностью ввода и вывода информации.
контрольная работа, добавлен 21.02.2019Граф как система объектов произвольной природы (вершин) и связок (ребер), соединяющих пары этих объектов. Определение связности графа. Нахождение наибольшего числа непересекающихся цепей. Нахождение наибольшего числа непересекающихся по ребрам путей.
реферат, добавлен 18.12.2022- 124. Степенная функция
Понятие переменной величины. Применение степенной функции с различными показателями. Обобщение степенной функции, ее свойства с отрицательным нечетным целым показателем. Характеристика основных свойств и особенностей построения графиков степенных функций.
контрольная работа, добавлен 17.05.2018 - 125. Графы и автоматы
Неориентированные и ориентированные графы, основные понятия и теории. Задача о максимальном потоке в сети. Приложения теоремы о потоках. Теория автоматов, операции над языками. Критерий распознаваемости и нераспознаваемости языка конечным автоматом.
учебное пособие, добавлен 25.12.2011