Застосування кусково–степеневих апроксимацій МСЕ для сингулярно збурених задач адвекції–дифузії–реакції
Аналіз ефективності застосування кусково-степеневих базисних функцій на прикладі сингулярно збурених задач адвекції–дифузії та адвекції–дифузії–реакції. Результати обчислювальних схем за різних способів вибору параметра кусково-степеневих апроксимацій.
Подобные документы
Дослідження ефективності застосування некласичних операційних й апроксимаційних методів для задач нецілого числення. Розробка апроксимаційно-операційних моделей динамічних систем нецілого порядку, з елементами запізнювання, крайових та варіаційних задач.
автореферат, добавлен 28.08.2014Застосовування формул доповнення та числових значень тригонометричних функцій кутів до розв'язування задач. Особливості їх засвоювання учнями. Приклади усних вправ. Обчислення значень виразу без допомоги таблиць. Поняття стандартних і нестандартних задач.
конспект урока, добавлен 14.09.2018Побудова та обґрунтування алгоритмів для розв’язання деяких класів оптимізаційних задач. Розробка алгоритму розв’язання сформульованої задачі групового вибору з розбиттям множини виборців на підгрупи. Рекомендації щодо вибору параметрів алгоритмів.
автореферат, добавлен 11.10.2011Обчислення аналітичних оцінок стійкості системи лінійних алгебраїчних рівнянь за допомогою чисел обумовленості матриць. Аналіз абсолютної та відносної похибок розв’язків для збурених моделей. Використання програми Mathcad для створення зворотної матриці.
лабораторная работа, добавлен 31.10.2019Визначення необхідних і достатніх умов стійкості різних типів стосовно збурень вхідних даних векторних задач цілочислової оптимізації. Створення та обґрунтування підходів до регуляризації нестійких задач. Пошук розв’язків, оптимальних за Парето і Смейлом.
автореферат, добавлен 26.07.2014Центральна проекція та перспектива. Застосування масштабних задач та задач на побудову перспективи геометричних фігур. Схема розміщення джерела світла відносно спостерігача. Використання дробових точок збігу. Побудова тіней при штучному освітленні.
курс лекций, добавлен 06.08.2017Вивчення особливостей чисельно-аналітичного способу дослідження крайових задач для зліченних систем нелінійних диференціальних рівнянь першого порядку. Оцінка ітераційних схем побудови розв’язків у вигляді рівномірно збіжної послідовності функцій.
автореферат, добавлен 23.02.2014Розробка ефективних математичних моделей, обчислювальних методів та інструментальних засобів для синтезу моделей багатофакторного оцінювання і вибору альтернатив. Вибір параметрів моделі у класах адитивних, мультиплікативних і змішаних схем компромісу.
автореферат, добавлен 25.02.2015- 84. Розв’язок задач стійкості пластин при неоднорідному докритичному стані за допомогою методу R-функцій
Розробка ефективних методів розрахунку на міцність тонкостінних елементів. Вивчення закономірності поведінки пластин в залежності від способів закріплення та анізотропії матеріалу. Обчислення інтегральних характеристик з використанням теорії R-функцій.
автореферат, добавлен 24.06.2014 - 85. Історико-методичний аналіз розвитку методів розв’язування задач з алгебри в загальноосвітній школі
Методичні вимоги до сучасного використання методів та способів розв’язування алгебраїчних задач. Історико-методичний аналіз розвитку методів розв’язування задач з алгебри, алгебри і початків аналізу; виявлення основ досягнення і тенденції в їх розвитку.
автореферат, добавлен 29.01.2016 Умови розв’язності задач з параметрами для сингулярних інтегральних рівнянь, їх сумісність з обмеженнями. Обґрунтування ітераційного і проекційно-ітеративного методів розрахунку. Оцінка збіжності та похибки, побудованих зручних обчислювальних схем.
автореферат, добавлен 05.01.2014Геометрична інтерпретація задач лінійного програмування. Застосування графічного методу для розв’язування двовимірних та деяких тривимірних задач та обмеження щодо його використання. Вивчення алгоритму графічного методу та прикладів розв’язування ЗЛП.
реферат, добавлен 14.12.2013Основні означення з теорії графів, особливості їх застосування. Способи розв'язання логічних задач за допомогою дерев графів. Розгляд завдань з неоднозначними відповідями і з надлишковими даними. Приклад побудови дерева розбору арифметичного виразу.
курсовая работа, добавлен 16.04.2013Програмні засоби, за допомогою яких можна розв’язувати досить багато математичних задач різних рівнів складності. Розгляд задач на дослідження та побудову графіків функцій розподілу статистичних ймовірностей. Проектування графіків за допомогою Function.
статья, добавлен 04.03.2018Застосування формулювання властивостей перпендикулярів, похилих та проекцій для розв'язування задач. Дослідження означення прямокутного трикутника та властивостей його сторін. Розгляд теореми Піфагора. Проведення до прямої перпендикуляра і похилої.
конспект урока, добавлен 10.09.2018Дослідження задач асимптотичної поведінки для великих значень параметра лінійно незалежної системи розв’язків сингулярного диференціального та квазідиференціального рівнянь. Вивчення асимптотики власних функцій сингулярного диференціального оператору.
автореферат, добавлен 02.08.2014Розробка методів відшукання розв’язків крайових задач. Суть простої модифікації формули Даламбера. Аналіз теорії диференціальних рівнянь у частинних похідних. Побудова наближених періодичних рішень завдань для квазілінійних гіперболічних тотожностей.
статья, добавлен 28.07.2016Встановлення необхідних і достатніх умов існування розв'язків різних класів векторних задач дискретної оптимізації. Побудова математичних моделей та методів дослідження дискретних задач оптимізації в умовах невизначеності та оцінка їх ефективності.
автореферат, добавлен 12.07.2015Поняття векторів, їх види, лінійна залежність, коллінеарність і компланарність, визначення координат. Обчислення скалярних добутків. Приклади застосування векторів до задач мікроекономіки. Прямокутна декартова система координат на площині та у просторі.
реферат, добавлен 19.11.2009Оцінка ефективності використання диференціальних рівнянь при вирішенні задач математичної ідеалізації процесів і явищ, що досліджуються в небесній механіці. Загальні уявлення про асимптотичні методи розв’язків задач нелінійних інваріантних функцій.
автореферат, добавлен 06.07.2014Асимптотика базисних функцій узагальненого ряду Тейлора. Зв’язок між поведінкою коефіцієнтів узагальненого ряду Тейлора та його суми. Одержання достатніх умов існування і єдиності розв’язків з компактним носієм функціонально-диференціальних рівнянь.
автореферат, добавлен 28.08.2014Розробка чисельно-аналітичних методів та обчислювальних алгоритмів побудови та дослідження загальних розв’язків прямих та обернених задач динаміки параболічних систем, що описують досліджувані процеси. Оцінка точності та критерії єдиності розв’язків.
автореферат, добавлен 27.04.2014Дослідження початково-крайової задачі для квазілінійних двовимірних рівнянь параболічного типу зі сталими коефіцієнтами. Застосування функцій Гріна для одержання вагових апріорних оцінок точності різницевих схем у випадку крайових умов третього роду.
автореферат, добавлен 29.10.2015Дослідження процесів теплопереносу, переносу заряду, розподілу концентрації компонентів біохімічної реакції. Моделювання фізико-хімічних процесів в біосенсорних системах на основi напiвпровiдникових структур, створення математичного інструментарію.
автореферат, добавлен 28.09.2015Побудова апроксимаційних моделей за допомогою методу дискретизації часу для стохастичних диференціальних рівнянь у гільбертовому просторі. Швидкість збіжності апроксимацій за схемами Ейлера і Мільштейна для напівлінійних рівнянь еволюційного типу.
автореферат, добавлен 07.08.2014