Бесконечные произведения

Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.

Подобные документы

  • Рассмотрение достаточных условий разложимости функции в ряд Тейлора. Изучение и анализ процесса применения рядов в приближенных вычислениях. Определение разложения некоторых элементарных функций в ряд Маклорена. Исследование применения степенных рядов.

    контрольная работа, добавлен 12.05.2023

  • Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.

    курсовая работа, добавлен 12.02.2013

  • Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.

    лекция, добавлен 29.09.2014

  • Сходимость числового ряда с положительными членами: достаточные признаки сходимости при ее определении. Положительность членов ряда по признаку Даламбера, радикальному и интегральному признакам Коши. Расхождение несобственного интеграла и числового ряда.

    задача, добавлен 06.01.2011

  • Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.

    контрольная работа, добавлен 16.11.2014

  • Пределы интегрирования в двойном интеграле по данной области. Вычисление двойного интеграла в прямоугольной и полярной системах координат. Вычисление криволинейного интеграла по формуле Грина. Исследование заданных рядов про признакам Даламбера и Коши.

    методичка, добавлен 10.11.2014

  • Обучение учащихся и студентов отысканию производной сложной функции. Правила вычисления производных алгебраической суммы функций, произведения и частного функций. Упражнения на применение изученных формул и правил. Дифференцирование сложной функции.

    статья, добавлен 18.02.2020

  • Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.

    лекция, добавлен 29.09.2014

  • Определение зависимости между перемещениями и деформациями, сущность уравнения Коши и его использование. Условия совместности (неразрывности) деформаций. Рассмотрение дифференциального уравнения равновесия. Расчет напряжения на наклонных площадках.

    курсовая работа, добавлен 19.09.2017

  • Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.

    контрольная работа, добавлен 12.01.2013

  • Теория формальных степенных рядов. Алгебра Коши, операция подстановки одного степенного ряда в другой. Понятие экспоненциального ряда. Основной принцип теории производящих функций. Производящие функции числа основных комбинаторных объектов и выборок.

    курсовая работа, добавлен 23.04.2011

  • Основное содержание и подходы к решению задачи Коши. Принципы формирования численных методов, их типы: явные и неявные, одно- и многошаговые. Основные глобальные и локальные ошибки, возникающие при их применении. Выбор шага метода и его обоснование.

    отчет по практике, добавлен 18.02.2019

  • Обыкновенное дифференциальное уравнение как тождество, связывающее между собой значения независимой переменной, функции и её производных. Методика вычисления задачи Коши. Характеристика основных типов уравнений, которые допускают понижение порядка.

    презентация, добавлен 05.02.2015

  • Предел последовательности. Необходимое условие сходимости бесконечной числовой последовательности. Вычисление предела последовательности. Бесконечно малые последовательности. Связь между бесконечно малыми и сходящимися последовательностями, их свойство.

    контрольная работа, добавлен 03.03.2012

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Уравнения Фредгольма 1-го и 2-го рода. Конечные и бесконечные пределы интегрирования. Однородное интегральное уравнение Вольтера. Понятие метрического пространства. Принцип сжатых отображений. Теорема Банаха и решение интегральных уравнений 2-го рода.

    курсовая работа, добавлен 22.04.2011

  • Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.

    учебное пособие, добавлен 18.01.2015

  • Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.

    контрольная работа, добавлен 01.07.2012

  • Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.

    лабораторная работа, добавлен 16.06.2014

  • Перестановка порядка интегрирования в силу непрерывности подынтегральной функции и конечности кривых. Оценка интеграла Коши по аналитической кривой. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции.

    контрольная работа, добавлен 23.04.2011

  • Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.

    лекция, добавлен 26.01.2014

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.

    задача, добавлен 31.03.2014

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.