Проведение множественного регрессивного анализа в пакете STATISTICA для изучения взаимосвязи переменных экономической задачи
Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.
Подобные документы
Особенности регрессионного анализа экономических моделей, его основные положения. Нахождение и оценка параметров парной регрессионной модели. Оценка значимости уравнения регрессии. Корреляционный анализ зависимости цен на недвижимость в Пермском крае.
курсовая работа, добавлен 18.06.2015Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.
статья, добавлен 23.01.2019Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.
контрольная работа, добавлен 21.12.2013Определение динамики стоимости недвижимости при помощи корреляционно-регрессионного анализа. Ввод исходных данных и построение корреляционной матрицы. Поиск доверительных интервалов для коэффициентов уравнения регрессии. Расчёт коэффициента эластичности.
контрольная работа, добавлен 26.03.2014Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Использование регрессионного анализа в физико-химических исследованиях. Обработка экспериментальных результатов методом наименьших квадратов. Определение коэффициентов уравнений регрессии при аппроксимации данных полиномами первой и второй степени.
контрольная работа, добавлен 10.12.2015Методы расчета линейного коэффициента парной корреляции. Оценка статистической значимости коэффициентов множественного уравнения регрессии с помощью критерия Стьюдента. Проверка системы эконометрических уравнений на необходимое условие идентификации.
контрольная работа, добавлен 12.12.2015Методологические основы применения регрессионного анализа в эконометрике. Интервальная оценка функции регрессии и параметров модели. Особенности использования коэффициента детерминации. Определение дисперсии и проверка достоверности по критерию Фишера.
курсовая работа, добавлен 17.09.2014Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Эконометрика как наука, изучающая количественные закономерности и взаимосвязи в экономике. Методика расчета стандартных ошибок коэффициентов парной линейной регрессии. Эконометрический анализ при нарушении предпосылок метода наименьших квадратов.
учебное пособие, добавлен 04.06.2015Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.
контрольная работа, добавлен 15.05.2017Сущность, виды и причины безработицы в России. Построение модели парной регрессии. Определение показателя эластичности. Вычисления критерия Дарбина-Уотсона и индекса Ласпейреса. Исследование остатков с применением предпосылок метода наименьших квадратов.
дипломная работа, добавлен 18.06.2014Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.
учебное пособие, добавлен 14.04.2015Оценка надежности и качества коэффициентов уравнения регрессии. Использование методов регрессионного анализа при исследовании ЗАО "Агрофирма "Маяк". Обоснование точной зависимости роста зерновых культур от количества осадков в вегетационный период.
курсовая работа, добавлен 15.02.2014Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.
контрольная работа, добавлен 05.02.2016Оценка связи порядковых переменных с помощью непараметрических ранговых коэффициентов Спирмена и Кендалла. Модели метода наименьших квадратов с детерминированной независимой переменной. Оценка дисперсии независимой переменной. Сложение временных рядов.
статья, добавлен 28.07.2020Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.
контрольная работа, добавлен 16.04.2012Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.
лабораторная работа, добавлен 18.09.2012Три основных класса моделей, которые применяются для анализа и прогноза в эконометрике. Понятие о временных рядах и их виды. Решение задач определения парной и множественной регрессии. Использование независимых переменных в регрессионных моделях.
учебное пособие, добавлен 01.06.2013Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Принципы измерения и шкалирования. Особенности дисперсионного, многофакторного и ковариационного, модели регрессионного и факторного анализа. Характеристика основных этапов выполнения факторного анализа. Описание этапов выполнения кластерного анализа.
курс лекций, добавлен 23.09.2017Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Проверка адекватности, проведение точечного, интервального расчета и построение факторной экономической модели. Математическая запись линейной статистической зависимости модели. Порядок проведения регрессионного и дисперсного анализа построенного шаблона.
контрольная работа, добавлен 16.01.2013Вычисление параметров уравнения линейной регрессии; экономическая интерпретация коэффициента регрессии. Проверка значимости параметров регрессии с помощью t-критерия Стьюдента. Запись системы одновременных уравнений и проверка их на идентифицируемость.
контрольная работа, добавлен 29.10.2012Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016