Биография и математические работы А.Н. Колмогорова
Жизнь и профессиональная деятельность выдающегося математика Андрея Николаевича Колмогорова. Анализ теорем и аксиом элементарной теории вероятностей, понятие непрерывности и бесконечности пространства. Решение линейных уравнений в конечных разностях.
Подобные документы
Математика – наука о количественных отношениях и пространственных формах действительного мира. Исторические этапы ее развития. Взгляды на математику выдающегося деятеля прошлого и настоящего Н. Лобачевского. Биография создателя неевклидовой геометрии.
реферат, добавлен 03.12.2013Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017- 78. Нерівності типу Колмогорова для похідних дробового порядку та їх застосування в теорії апроксимації
Дослідження задачі про нерівності типу Колмогорова для похідних дробового порядку функцій однієї та багатьох змінних, порівняння точних констант у нерівностях для норм "проміжних" похідних періодичних і неперіодичних функцій багатьох змінних у просторах.
автореферат, добавлен 30.08.2014 Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.
доклад, добавлен 13.03.2022Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.
лекция, добавлен 26.01.2014Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Использование итерации в прикладной математике. Выполнение арифметических операций над переменными с плавающей точкой на компьютере. Преобразования матрицы чисел прямым и обратным ходом Гаусса. Решения линейных систем уравнений методом квадратного корня.
лабораторная работа, добавлен 21.03.2014Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.
лекция, добавлен 26.03.2012Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.
контрольная работа, добавлен 18.12.2009Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.
статья, добавлен 03.11.2015Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Решение системы линейных уравнений средствами матричного исчисления и с помощью правила Крамера. Вычисление алгебраических дополнений определителя. Сущность метода Гаусса. Формула площади треугольника. Расчет координат нормального вектора плоскости.
контрольная работа, добавлен 21.01.2012Математика, как набор следствий, выводимых из некоторой системы аксиом. Важнейшая характеристика аксиоматического метода Гильберта. Особенность разработки теоремы о неполноте Курта Геделя. Основной анализ непротиворечивости формальной арифметики.
контрольная работа, добавлен 16.12.2014Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.
контрольная работа, добавлен 24.12.2014Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.
лекция, добавлен 09.09.2017Основные формулы, используемые в методе Крамера и методе обратной матрицы при решении системы линейных алгебраических уравнений. Решение СЛАУ с помощью MS Excel. Ввод матрицы коэффициентов и вектора свободных коэффициентов. Определение обратной матрицы.
лабораторная работа, добавлен 11.03.2011Решение задачи численным методом с помощью системы линейных уравнений. Перестановка неизвестных в системе уравнений. Столбцы фундаментальной матрицы. Фундаментальная система решений. Определение ранга матрицы. Приведение матрицы к трапециедальному виду.
контрольная работа, добавлен 02.05.2019Исследовано, что в математике название парадокса применяется, когда из кажущихся верными посылок получаются противоречия, что доказывает ложность посылок. Рассмотрено несколько наиболее интересных парадоксов теории вероятностей, приведены примеры.
статья, добавлен 25.02.2019Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Российская вероятностная школа Колмогорова. Восприятие вероятностей по Мизесу как физического процесса. Расчёты различных состояний в парадоксальной игре Пенни при модификациях этой игры, объяснение которых базируется на идеях Мизеса о "коллективах".
статья, добавлен 11.07.2018Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.
лабораторная работа, добавлен 08.06.2015Решение математической задачи методом Гаусса, с выбором главного элемента. Расчеты линейных алгебраических уравнений по Гауссу-Жордано, Зейделю с заданной точностью и простыми итерациями. Вычисление определителя системы. Нахождение обратной матрицы.
задача, добавлен 22.06.2015