Методы оптимизации
Решения типовой задачи оптимизации поисковым методом Хука-Дживса. Начальная базисная точка. Локальное поведение функции. Изображение блок-схемы алгоритма. Современные технологии автоматизации. Применение унифицированной системы автоведения поезда.
Подобные документы
Методика постановки математических задач для поиска оптимального решения. Специфика использования геометрического и динамического программирования для решения заданий оптимизации многостадийных процессов. Принципы построения многоугольника решений.
реферат, добавлен 22.01.2014Рассматривается применение неполиномиальных сплайнов минимального дефекта к задаче построения среднеквадратического приближения. Исследуются различные варианты оптимизации для решения методом релаксации возникающей в ходе построения приближения системы.
статья, добавлен 15.01.2019Математическая модели задачи планирования работы разнотипных машин с периодами простоя. Теорема о корректности приведения этой задачи к задаче комбинаторной оптимизации. Алгоритм нахождения нижней границы целевой функции возникающей задачи оптимизации.
статья, добавлен 19.02.2016Определение унимодальности функции. Точные и приближенные методы поиска экстремума. Метод перебора, по разрядного поиска, дихотомии, золотого сечения, средней точки, хорд и метод Ньютона. Сравнение методов оптимизации по скорости вычисления и точности.
курсовая работа, добавлен 21.12.2015Рассмотрение математических закономерностей, лежащих в основе теории оптимизации. Изучение ряда содержательных и формализованных задач оптимизации. Определение этапов инженерного проектирования. Анализ процесса построения математической модели системы.
контрольная работа, добавлен 01.04.2020Расчет числа каналов для осуществления связи между двумя пунктами с заданным расстоянием. Поиск решения задачи по теореме равновесия. Решение двухкритериальной задачи линейного программирования методом идеальной точки. Решение уравнения искомой прямой.
контрольная работа, добавлен 13.10.2017Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.
презентация, добавлен 07.07.2015Задачи, решение которых состоит в нахождении оптимальных вариантов для строительной фирмы в поддержании стабильного дохода и минимальных расходов. Наем работников для оптимизации прибыли. Оптимальный план постройки зданий при имеющихся ресурсах.
дипломная работа, добавлен 29.05.2012Методологические принципы и алгоритмы оптимизации в ракурсе инженерного подхода. Модели задач оптимизации. Методы классического математического анализа исследования функций. Экстремумы функции одной и многих переменных. Метод множителей Лагранжа.
контрольная работа, добавлен 20.01.2015Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.
реферат, добавлен 11.11.2010Методика численного решения краевой задачи для уравнения теплопроводности с использованием неявной конечно-разностной схемы. Применение алгоритма встречной прогонки для вычисления системы линейных уравнений с трехдиагональной матрицей коэффициентов.
статья, добавлен 12.08.2020Программирование в управлении как процесс распределения ресурсов. Определение метода и задачи квадратичного программирования. Анализ конечного алгоритма решения задачи квадратичного программирования. Применение конечного алгоритма решения на практике.
курсовая работа, добавлен 23.02.2014Пространство состояний системы. Модель дискретной управляемой системы. Задачи оптимизации многошаговых процессов в дискретных системах. Определение минимизирующей последовательности. Построение траектории управляемых процессов. Задача Больца и Лагранджа.
презентация, добавлен 21.08.2015Характеристика прямых методов безусловной минимизации многомерных задач: метода Хука-Дживса, Розенброка, циклического покоординатного спуска, сопряженных направлений Пауэлла. Изучение особенностей метода минимизаций функций по правильному симплексу.
презентация, добавлен 09.07.2015Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
контрольная работа, добавлен 13.10.2017Статистические методы оптимизации экспериментальных исследований в металлургии. Основы методов регрессионного, корреляционного и дисперсионного анализов, а также планирования экстремального эксперимента. Проверка однородности результатов измерений.
курс лекций, добавлен 23.10.2012Модификация модели вычислений, представляющей собой незавершенный метод ветвей и границ. Разработка подхода к формированию метрик на множестве подзадач в различных задачах дискретной оптимизации. Алгоритм кластеризации ситуаций в задачах оптимизации.
автореферат, добавлен 22.07.2018Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
дипломная работа, добавлен 26.07.2018Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.
курсовая работа, добавлен 23.08.2014Кластерный анализ как новый раздел математики, в котором изучаются методы разбиения совокупности объектов, заданных конечными наборами признаков, на однородные группы. Знакомство с особенностями применения задач оптимизации в кластерном анализе.
статья, добавлен 03.12.2020Характеристика вычислительных трудностей, связанных с барьерными функциями. Этапы алгоритма методы барьерных функций, теорема Лемма и отсутствие ограничений-равенств. Процесс преобразования задачи с ограничениями в задачу безусловной оптимизации.
лекция, добавлен 06.09.2017Построение математических моделей оптимизации формы внешних и внутренних границ термоупругих тел. Зависимость температурных и механических полей от их формы. Разработка алгоритма и комплекса программ для оптимизации формы в задачах теплопроводности.
автореферат, добавлен 02.03.2018Исследование операций как метод, который дает в распоряжение инженера количественные методы для принятия решений по управлению процессов оптимизации. Математическая формулировка задач дискретного программирования. Достоинства и недостатки алгоритма.
лекция, добавлен 08.09.2013Задачи одномерной безусловной минимизации. Численные методы поиска многомерного безусловного экстремума. Свойство унимодальной функции. Метод поразрядного поиска, перебора, деления отрезка пополам, золотого сечения, средней точки, Ньютона и хорд.
курсовая работа, добавлен 15.11.2011