Осуществление математических операций

Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.

Подобные документы

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Определение абсолютной величины смешанного произведения векторов. Рассмотрение и характеристика условия параллельности и перпендикулярности прямых. Ознакомление с операциями сложения матриц. Исследование и анализ процесса умножения матрицы на число.

    лабораторная работа, добавлен 29.11.2015

  • Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.

    лекция, добавлен 30.11.2016

  • Математическая модель и метод процесса табличной реализации операции умножения двух чисел, представленных в искусственной форме класса вычетов. Поиски путей повышения производительности позиционной компьютерной системы обработки целочисленных данных.

    статья, добавлен 14.07.2016

  • Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.

    презентация, добавлен 21.09.2013

  • Исследование особенностей математической индукции, одного из методов доказательства истинности некоего утверждения для всех натуральных чисел. Характеристика аксиомы Пеано, аксиомы существования минимума, доказательства аксиомы индукции как теоремы.

    статья, добавлен 25.01.2012

  • Изучение сущности, основания и коэффициента степени. Особенность нахождения знака выражения. Важнейшая характеристика правил умножения и деления разряда для произвольных натуральных чисел. Существенный анализ определения фазиса с нулевым показателем.

    разработка урока, добавлен 10.09.2015

  • Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.

    презентация, добавлен 19.12.2013

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.

    учебное пособие, добавлен 08.11.2013

  • Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.

    контрольная работа, добавлен 17.04.2015

  • Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.

    курсовая работа, добавлен 03.12.2013

  • Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.

    учебное пособие, добавлен 12.03.2015

  • Основные понятия математической логики. Взаимосвязь логических операций и способы вычисления логических выражений. Таблица истинности логической формулы, которая выражает соответствие между всевозможными наборами значений переменных и значениями формулы.

    контрольная работа, добавлен 09.01.2014

  • Понятие кольца как непустого множества К с определенными на нем бинарным алгебраическими операциями сложения и умножения, требования к аксиомам. Разновидности кольца К и основные требования, предъявляемые к каждому из них, простейшие свойства и значение.

    контрольная работа, добавлен 10.01.2012

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.

    контрольная работа, добавлен 24.01.2012

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.

    контрольная работа, добавлен 06.12.2017

  • Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.

    шпаргалка, добавлен 01.05.2009

  • Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.

    контрольная работа, добавлен 06.11.2012

  • Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.

    реферат, добавлен 12.11.2016

  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций, добавлен 24.04.2015

  • Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.

    контрольная работа, добавлен 13.05.2014

  • Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.

    презентация, добавлен 10.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.