Интегральное исчисление: теория и методы интегрирования
Рассмотрение роли интегрального исчисления в современной науке. Перекрестный и сравнительный анализ влияния интегральных исчислений в математике. Методы выполнения вычисления определенных интегралов. Методы нахождения неопределенных интегралов.
Подобные документы
Систематизация и закрепление основных знаний учащихся о первообразной, интеграле и дифференциале. Роль Лейбница, Бернулли и Ньютона в становлении интегрального исчисления. Сущность процесса интегрирования. Применение интеграла в различных областях науки.
презентация, добавлен 23.06.2013Определение двойного интеграла и его свойства. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат. Определение прямоугольной и произвольной областей интегрирования.
лекция, добавлен 28.03.2020Определение бета- и гамма-функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов по формуле Стерлинга. Рассмотрение неполных гамма-функций (функции Прима). Примеры вычислений интегралов.
курсовая работа, добавлен 01.11.2010Особенность интегрирования тригонометрических, иррациональных и дробно-рациональных функций. Характеристика вычисления различных видов интегралов. Главный анализ нахождения площади области, ограниченной кривыми, заданными в декартовых координатах.
методичка, добавлен 28.10.2015Полное исследование функции и построение ее графика с использованием дифференциального исчисления. Расчет неопределенных интегралов с использованием методов интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных.
контрольная работа, добавлен 16.01.2015Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.
контрольная работа, добавлен 16.04.2012Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.
презентация, добавлен 18.09.2013Проведение исследования многомерных сингулярных интегральных уравнений. Особенность разработки основных приближенных методов для вычисления многомерных интегралов. Характеристика главной связи между разными формами средств представления функций.
статья, добавлен 06.06.2018Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.
контрольная работа, добавлен 18.12.2012Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.
презентация, добавлен 17.09.2013Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.
контрольная работа, добавлен 15.06.2013Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.
учебное пособие, добавлен 19.11.2015История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Определение понятия интеграла. Ознакомление с историей появления новой ветви математики - интегрального исчисления. Рассмотрение особенностей отыскивания функций по их производным. Особенности понятий бесконечности, движения и функциональной зависимости.
презентация, добавлен 11.05.2016Дифференциальное исчисление функций, геометрический и физический смысл ее производной. Логарифмическое дифференцирование; интегральное исчисление; градиент. Нахождение площадей плоских фигур. Геометрические и физические приложения кратных интегралов.
курс лекций, добавлен 29.06.2016Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.
курсовая работа, добавлен 30.10.2010Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
контрольная работа, добавлен 29.01.2013Рассмотрение дробно-рациональной функции; построение ее графика. Альтернативные методы построения графиком y=1/x. Ознакомление с методом неопределенных коэффициентов. Изучение правил интегрирования правильной и неправильной дробно-рациональной функций.
курсовая работа, добавлен 28.12.2018Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Неравенства и теорема о среднем. Вычисление с помощью повторного интегрирования. Анализ и практика применения тройных интегралов для расчета координат.
презентация, добавлен 17.09.2013Рассмотрение особенностей развития математического анализа и его роли в современной науке. Перекрестный и сравнительный анализ влияния технологий и факторов роста в образовании на развитие математического анализа. Решение уравнений в частных производных.
статья, добавлен 15.12.2024Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016