Теория вероятностей в жизни
Ценность теории вероятностей для общего образования. Краткая историческая справка появления азартных игр, применение теории в них. Сущность закона Бернулли. Художественная правда и вероятность сложного события. Краткая характеристика теории рекламы.
Подобные документы
Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Операции над событиями и их запись. Относительная частота случайного события, ее устойчивость. Изучение нормального закона распределения. Дисперсия и среднее квадратичное отклонение случайной величины. Неравенства Чебышева и закон больших чисел.
учебное пособие, добавлен 22.06.2014Свойства треугольной последовательности биномиальных коэффициентов Паскаля. Применение теории графов находит в современных геоинформационных системах. Статистические методы организации выборок, связь математической статистики с теорией вероятностей.
реферат, добавлен 13.11.2013Эксперимент как некоторая воспроизводимая совокупность условий, в которых наблюдается то или другое явление, фиксируется тот или другой результат, особенности его проведения, анализа в теории вероятностей. Сравнение степени возможности различных событий.
реферат, добавлен 06.05.2012Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.
контрольная работа, добавлен 25.05.2015Операции над событиями. Частость наступления события. Аксиоматика теории вероятности. Построение вероятностного пространства. Классическое определение вероятности. Обоснование формулы условной вероятности в общем случае. Формула сложения вероятностей.
реферат, добавлен 27.11.2015Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.
учебное пособие, добавлен 15.01.2014Рассмотрение особенностей развития математического обучения и его влияния на систему обучения теории вероятности. Перекрестный и сравнительный анализ влияния выбора направления развития теории вероятности. Рекомендации по внедрению разработок в обучение.
статья, добавлен 28.10.2024Пространство элементарных исходов. События в дискретном пространстве. Сумма (объединение), произведение (пересечение), разность событий. Основные свойства операций над событиями. Вероятность в классическом пространстве. Понятие счётного множества.
презентация, добавлен 22.09.2017Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.
методичка, добавлен 16.05.2016Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.
реферат, добавлен 19.07.2010Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.
контрольная работа, добавлен 30.03.2017Среднеквадратичное отклонение как совокупность наибольшего сгущения значений случайной величины. Частота как число случаев появления возможного события при определенных условиях. Классическое определение вероятности наступления случайного события.
контрольная работа, добавлен 07.11.2017Контрольные задачи типового расчета по теории вероятностей и по математической статистике. Схема соединения элементов, образующих цепь с одним входом и одним выходом. "Прямое" сложение и умножение вероятностей. Математическое ожидание и дисперсия.
контрольная работа, добавлен 17.11.2014Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.
задача, добавлен 20.11.2015Биография швейцарского математика, физика и физиолога Даниила Бернулли. Исследования по теории вероятностей. Открытия в области высшей математики и физики. Дифференциальные уравнения и построение графиков скоростного и пьезометрического напоров.
реферат, добавлен 25.03.2015Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.
методичка, добавлен 07.06.2012Расчет вероятности своевременного прибытия автобусов. Применение теорем умножения вероятностей независимых событий и сложения вероятностей несовместимых событий. Применение формулы полной вероятности при определении вероятности дефекта укупорки банки.
контрольная работа, добавлен 26.05.2015Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Определение гамма-функции. Интегральное представление, область определения, полюсы. Свойства, непрерывность. Представление Ганкеля через интеграл по петле. Предельная форма Эйлера. Применение гамма-функции в теории вероятностей и математической статистике
курсовая работа, добавлен 08.06.2017Пьер де Ферма - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел, оптики, исчислении бесконечно малых величин. Краткая биография математика. Формулировка Великой теоремы Ферма.
презентация, добавлен 01.04.2012Алгоритм формирования матрицы абсолютных частот. Формирование матрицы условных и безусловных вероятностей. Взаимосвязь системной меры целесообразности информации со статистикой. Получение матрицы знаний. Реализация модели в аналитической системе "Эйдос".
статья, добавлен 26.04.2017Требования к применению формальных результатов в частотной интерпретации теории вероятностей. Определение теоретических величин, используемых в теореме на основе экспериментальных данных, и верификацию независимости данных. Трактование теоремы Бернулли.
статья, добавлен 20.07.2021Взаимоотношения теории вероятностей и математической статистики. Основные типы реальных ситуаций с позиций соблюдения условий статистического ансамбля. Границы применимости вероятностно-статистических методов при принятии решений в реальных ситуациях.
реферат, добавлен 04.12.2013